Multi-strategy ensemble artificial bee colony algorithm

Abstract Artificial bee colony (ABC) is a recently proposed optimization technique which has shown to be competitive to other population-based stochastic algorithms. However, ABC is good at exploration but poor at exploitation because of its solution search strategy. Thus, to obtain an efficient performance, utilizing different characteristics of solution search strategies can be appropriate during different stages of the search process to achieve a tradeoff between exploration and exploitation. In this paper, we propose a novel multi-strategy ensemble ABC (MEABC) algorithm. In MEABC, a pool of distinct solution search strategies coexists throughout the search process and competes to produce offspring. Experiments are conducted on a set of commonly used numerical benchmark functions, including the CEC 2013 shifted and rotated problems. Results show that MEABC performs significantly better than, or at least comparable to, some well-established evolutionary algorithms.

[1]  Sam Kwong,et al.  Gbest-guided artificial bee colony algorithm for numerical function optimization , 2010, Appl. Math. Comput..

[2]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[3]  Zhihua Cui,et al.  Theory and applications of swarm intelligence , 2011, Neural Computing and Applications.

[4]  W. Y. Szeto,et al.  An artificial bee colony algorithm for the capacitated vehicle routing problem , 2011, Eur. J. Oper. Res..

[5]  Alok Singh,et al.  An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem , 2009, Appl. Soft Comput..

[6]  P. N. Suganthan,et al.  Ensemble of niching algorithms , 2010, Inf. Sci..

[7]  Andries P. Engelbrecht Heterogeneous Particle Swarm Optimization , 2010, ANTS Conference.

[8]  Hui Wang,et al.  Diversity enhanced particle swarm optimization with neighborhood search , 2013, Inf. Sci..

[9]  Zhijian Wu,et al.  Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems , 2011, Soft Comput..

[10]  Dervis Karaboga,et al.  A modified Artificial Bee Colony algorithm for real-parameter optimization , 2012, Inf. Sci..

[11]  Ajith Abraham,et al.  Design of fractional order PID controller using Sobol Mutated Artificial Bee Colony alogrithm , 2011, 2011 11th International Conference on Hybrid Intelligent Systems (HIS).

[12]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[13]  Qingfu Zhang,et al.  Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood Sizes , 2012, IEEE Transactions on Evolutionary Computation.

[14]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[15]  Mohammed El-Abd,et al.  Generalized opposition-based artificial bee colony algorithm , 2012, 2012 IEEE Congress on Evolutionary Computation.

[16]  S. N. Omkar,et al.  Applied Soft Computing Artificial Bee Colony (abc) for Multi-objective Design Optimization of Composite Structures , 2022 .

[17]  Ali Husseinzadeh Kashan,et al.  DisABC: A new artificial bee colony algorithm for binary optimization , 2012, Appl. Soft Comput..

[18]  Mehmet Fatih Tasgetiren,et al.  A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops , 2011, Inf. Sci..

[19]  Ali R. Yildiz,et al.  Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach , 2013, Inf. Sci..

[20]  Ajith Abraham,et al.  Levy mutated Artificial Bee Colony algorithm for global optimization , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[21]  Rohanin Ahmad,et al.  A modified artificial bee colony algorithm for constrained optimization problems , 2014 .

[22]  P. N. Suganthan,et al.  Ensemble of Constraint Handling Techniques , 2010, IEEE Transactions on Evolutionary Computation.

[23]  Dervis Karaboga,et al.  A modified Artificial Bee Colony (ABC) algorithm for constrained optimization problems , 2011, Appl. Soft Comput..

[24]  Wei-Chang Yeh,et al.  Solving reliability redundancy allocation problems using an artificial bee colony algorithm , 2011, Comput. Oper. Res..

[25]  Dervis Karaboga,et al.  Artificial bee colony programming for symbolic regression , 2012, Inf. Sci..

[26]  Lingling Huang,et al.  A global best artificial bee colony algorithm for global optimization , 2012, J. Comput. Appl. Math..

[27]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[28]  Bin Li,et al.  Multi-strategy ensemble particle swarm optimization for dynamic optimization , 2008, Inf. Sci..

[29]  Ponnuthurai N. Suganthan,et al.  Ensemble strategies with adaptive evolutionary programming , 2010, Inf. Sci..

[30]  Hui Wang,et al.  Gaussian Bare-Bones Differential Evolution , 2013, IEEE Transactions on Cybernetics.

[31]  Bilal Alatas,et al.  Chaotic bee colony algorithms for global numerical optimization , 2010, Expert Syst. Appl..

[32]  Dervis Karaboga,et al.  A survey: algorithms simulating bee swarm intelligence , 2009, Artificial Intelligence Review.

[33]  Andries Petrus Engelbrecht,et al.  A self-adaptive heterogeneous pso for real-parameter optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[34]  Shankar Chakraborty,et al.  Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm , 2011, Eng. Appl. Artif. Intell..

[35]  Alok Singh,et al.  New heuristic approaches for the dominating tree problem , 2013, Appl. Soft Comput..

[36]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[37]  Pei-wei Tsai,et al.  Interactive Artificial Bee Colony Supported Passive Continuous Authentication System , 2014, IEEE Systems Journal.

[38]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[39]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[40]  Mustafa Sonmez,et al.  Artificial Bee Colony algorithm for optimization of truss structures , 2011, Appl. Soft Comput..

[41]  Leandro dos Santos Coelho,et al.  Population's variance-based Adaptive Differential Evolution for real parameter optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[42]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[43]  Alok Singh,et al.  A hybrid heuristic for the set covering problem , 2010, Operational Research.

[44]  Zhihua Cui,et al.  PID-Controlled Particle Swarm Optimization , 2010, J. Multiple Valued Log. Soft Comput..

[45]  Rakesh Angira,et al.  A Comparative Study of Differential Evolution Algorithms for Estimation of Kinetic Parameters , 2012 .

[46]  Francisco Herrera,et al.  Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power , 2010, Inf. Sci..

[47]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[48]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer with local search , 2005, 2005 IEEE Congress on Evolutionary Computation.

[49]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[50]  Efrén Mezura-Montes,et al.  Elitist Artificial Bee Colony for constrained real-parameter optimization , 2010, IEEE Congress on Evolutionary Computation.

[51]  Alok Singh,et al.  A swarm intelligence approach to the quadratic minimum spanning tree problem , 2010, Inf. Sci..

[52]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[53]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[54]  Ji-Hwei Horng,et al.  Bacterial Foraging Particle Swarm Optimization Algorithm Based Fuzzy-VQ Compression Systems , 2012, J. Inf. Hiding Multim. Signal Process..

[55]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[56]  Dervis Karaboga,et al.  A combinatorial Artificial Bee Colony algorithm for traveling salesman problem , 2011, 2011 International Symposium on Innovations in Intelligent Systems and Applications.

[57]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[58]  Xu Wei-bin A Modified Artificial Bee Colony Algorithm , 2011 .

[59]  Junjie Li,et al.  Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions , 2011, Inf. Sci..

[60]  Guoqiang Li,et al.  Development and investigation of efficient artificial bee colony algorithm for numerical function optimization , 2012, Appl. Soft Comput..

[61]  Shu-Chuan Chu,et al.  COMPUTATIONAL INTELLIGENCE BASED ON THE BEHAVIOR OF CATS , 2007 .

[62]  Sanyang Liu,et al.  Improved artificial bee colony algorithm for global optimization , 2011 .

[63]  Ajith Abraham,et al.  Human Perception-Based Color Image Segmentation Using Comprehensive Learning Particle Swarm Optimization , 2009, 2009 Second International Conference on Emerging Trends in Engineering & Technology.

[64]  Elizabeth Elias,et al.  Artificial bee colony algorithm for the design of multiplier-less nonuniform filter bank transmultiplexer , 2012, Inf. Sci..

[65]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[66]  Siba K. Udgata,et al.  Artificial bee colony algorithm for small signal model parameter extraction of MESFET , 2010, Eng. Appl. Artif. Intell..

[67]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[68]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[69]  Tapabrata Ray,et al.  Differential evolution with automatic parameter configuration for solving the CEC2013 competition on Real-Parameter Optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[70]  Mehmet Fatih Tasgetiren,et al.  An ensemble of discrete differential evolution algorithms for solving the generalized traveling salesman problem , 2010, Appl. Math. Comput..

[71]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, ANTS Conference.

[72]  Tiranee Achalakul,et al.  The best-so-far selection in Artificial Bee Colony algorithm , 2011, Appl. Soft Comput..

[73]  Mehmet Fatih Tasgetiren,et al.  A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem , 2011, Inf. Sci..