Shift-equivalence of k-ary, one-dimensional cellular automata rules

Abstract Cellular automata are locally-defined, synchronous, homogeneous, fully discrete dynamical systems. In spite of their typically simple local behaviour, many are capable of showing complex emergent behaviour. When looking at their time-evolution, one may be interested in studying their qualitative dynamical behaviour. One way to group rules that display the same qualitative behaviour is by defining symmetries that map rules to others, the simplest way being by means of permutations in the set of state variables and reflections in their neighbourhood definitions, therefore defining equivalence classes. Here, we introduce the notion of shift-equivalence as another kind of symmetry, now relative to the concept of translation. After defining the notion and showing it indeed defines an equivalence relation, we extend the usual characterisation of dynamical equivalence and use it to partition some specific binary cellular automata rule spaces. Finally, we give a characterisation of the class of shift-equivalent rules in terms of the local transition functions of the cellular automata in the class, by providing an algorithm to compute the members of the class, for any k-ary, one-dimensional rule.

[1]  G. Sirakoulis,et al.  A cellular automaton model for the effects of population movement and vaccination on epidemic propagation , 2000 .

[2]  Jarkko Kari,et al.  Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..

[3]  Gerta Köster,et al.  Pedestrian Group Behavior in a Cellular Automaton , 2014 .

[4]  Shigeru Ninagawa,et al.  Power Spectral Analysis of Elementary Cellular Automata , 2008, Complex Syst..

[5]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[6]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[7]  Ruedi Stoop,et al.  A full computation-relevant topological dynamics classification of elementary cellular automata. , 2012, Chaos.

[8]  Paul W. Rendell,et al.  Turing Universality of the Game of Life , 2002, Collision-Based Computing.

[9]  Xiaoping Liu,et al.  Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata , 2014, Int. J. Geogr. Inf. Sci..

[10]  Wentian Li,et al.  The Structure of the Elementary Cellular Automata Rule Space , 1990, Complex Syst..

[11]  Carlos A. Silva,et al.  A Fuzzy Delay Approach for HIV Dynamics Using a Cellular Automaton , 2015, J. Appl. Math..

[12]  Pedro P. B. de Oliveira,et al.  A Spectral Portrait of the Elementary Cellular Automata Rule Space , 2013 .

[13]  Leon O. Chua,et al.  A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science Part I: Threshold of Complexity , 2002, Int. J. Bifurc. Chaos.

[14]  Fred W. Roush,et al.  The shift equivalence problem , 1999 .

[15]  J. Wagoner,et al.  Strong shift equivalence theory and the shift equivalence problem , 1999 .

[16]  Tommaso Toffoli,et al.  Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .

[17]  Stephen Wolfram Cellular Automata And Complexity: Collected Papers , 2019 .

[18]  Md. Alamgir Hossain,et al.  A cellular automaton model for hypoxia effects on tumour growth dynamics , 2014, The 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2014).

[19]  S. Wolfram Computation theory of cellular automata , 1984 .

[20]  Gina Maira Barbosa de Oliveira,et al.  The best currently known class of dynamically equivalent cellular automata rules for density classification , 2006, Neurocomputing.

[21]  G. D’Ariano,et al.  Quantum field as a quantum cellular automaton: The Dirac free evolution in one dimension , 2012, 1212.2839.

[22]  Junbiao Guan,et al.  Extending Chua's Global Equivalence Theorem on Wolfram's New Kind of Science , 2007, Int. J. Bifurc. Chaos.

[23]  Melanie Mitchell,et al.  Computation in Cellular Automata: A Selected Review , 2005, Non-standard Computation.

[24]  Eric Goles Ch.,et al.  Self-Organized Societies: On the Sakoda Model of Social Interactions , 2017, Complex..

[25]  Pedro P. B. de Oliveira,et al.  Advances in the study of elementary cellular automata regular language complexity , 2016, Complex..

[26]  B. Weiss Subshifts of finite type and sofic systems , 1973 .

[27]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[28]  Andrew Wuensche,et al.  The global dynamics of cellular automata : an atlas of basin of attraction fields of one-dimensional cellular automata , 1992 .

[29]  Paola Flocchini,et al.  Solving the parity problem in one-dimensional cellular automata , 2013, Natural Computing.

[30]  G. Vichniac Simulating physics with cellular automata , 1984 .

[31]  Pedro P. B. de Oliveira,et al.  Derivation and Representation of One-Dimensional, Reversible, Number-Conserving Cellular Automata Rules , 2011, J. Cell. Autom..