Mandarin prosodic break detection based on complementary model

Automatic prosodic break detection is important for both speech understanding and natural speech synthesis. In this paper, we develop complementary model to detect Mandarin prosodic break by using acoustic, lexical and syntactic evidence. The model realizes the complementarities by taking the advantages of each model. When comparing with the baseline system, our proposed method has good performance.

[1]  Yang Liu,et al.  Automatic prosodic events detection using syllable-based acoustic and syntactic features , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[2]  Xuejing Sun,et al.  Pitch accent prediction using ensemble machine learning , 2002, INTERSPEECH.

[3]  Stephen R. Garner,et al.  WEKA: The Waikato Environment for Knowledge Analysis , 1996 .

[4]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[5]  Bo Xu,et al.  Automatic Prosody Boundary Labeling of Mandarin Using Both Text and Acoustic Information , 2008, 2008 6th International Symposium on Chinese Spoken Language Processing.

[6]  Wu Hua,et al.  An application of SAMPA-c for standard Chinese , 2000, INTERSPEECH.

[7]  Mari Ostendorf,et al.  Prediction of abstract prosodic labels for speech synthesis , 1996, Comput. Speech Lang..

[8]  Mari Ostendorf,et al.  Automatic labeling of prosodic patterns , 1994, IEEE Trans. Speech Audio Process..

[9]  Mark Hasegawa-Johnson,et al.  An automatic prosody labeling system using ANN-based syntactic-prosodic model and GMM-based acoustic-prosodic model , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[10]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[11]  Julia Hirschberg,et al.  Evaluation of prosodic transcription labeling reliability in the tobi framework , 1994, ICSLP.

[12]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[13]  Li Aijun,et al.  CHINESE PROSODY AND PROSODIC LABELING OF SPONTANEOUS SPEECH , 2002 .

[14]  Shrikanth S. Narayanan,et al.  Automatic Prosodic Event Detection Using Acoustic, Lexical, and Syntactic Evidence , 2008, IEEE Transactions on Audio, Speech, and Language Processing.