Power Consumption Models for Multi-Tenant Server Infrastructures

Multi-tenant virtualized infrastructures allow cloud providers to minimize costs through workload consolidation. One of the largest costs is power consumption, which is challenging to understand in heterogeneous environments. We propose a power modeling methodology that tackles this complexity using a divide-and-conquer approach. Our results outperform previous research work, achieving a relative error of 2% on average and under 4% in almost all cases. Models are portable across similar architectures, enabling predictions of power consumption before migrating a tenant to a different hardware platform. Moreover, we show the models allow us to evaluate colocations of tenants to reduce overall consumption.

[1]  Feng Zhao,et al.  Virtual machine power metering and provisioning , 2010, SoCC '10.

[2]  Margaret Martonosi,et al.  Runtime Power Monitoring in High-End Processors: Methodology and Empirical Data , 2003, MICRO.

[3]  Igor Kononenko,et al.  Estimating Attributes: Analysis and Extensions of RELIEF , 1994, ECML.

[4]  Albert Y. Zomaya,et al.  A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems , 2010, Adv. Comput..

[5]  Michael Abd-El-Malek,et al.  Omega: flexible, scalable schedulers for large compute clusters , 2013, EuroSys '13.

[6]  Randy H. Katz,et al.  Above the Clouds: A Berkeley View of Cloud Computing , 2009 .

[7]  Xiaolong Wu,et al.  Virtualization Technology and its Impact on Computer Hardware Architecture , 2011, 2011 Eighth International Conference on Information Technology: New Generations.

[8]  Christoforos E. Kozyrakis,et al.  Heracles: Improving resource efficiency at scale , 2015, 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA).

[9]  Lizy Kurian John,et al.  Runtime identification of microprocessor energy saving opportunities , 2005, ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005..

[10]  Gernot Heiser,et al.  The role of virtualization in embedded systems , 2008, IIES '08.

[11]  Christina Delimitrou,et al.  Paragon: QoS-aware scheduling for heterogeneous datacenters , 2013, ASPLOS '13.

[12]  Tecnología NASA Advanced Supercomputing Division , 2010 .

[13]  Efraim Rotem,et al.  Power-Management Architecture of the Intel Microarchitecture Code-Named Sandy Bridge , 2012, IEEE Micro.

[14]  John Kubiatowicz,et al.  Enabling power-awareness for the Xen hypervisor , 2018, SIGBED.

[15]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[16]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[17]  Qi Zhao,et al.  iMeter: An integrated VM power model based on performance profiling , 2013, Future Gener. Comput. Syst..

[18]  Frank Bellosa,et al.  The benefits of event: driven energy accounting in power-sensitive systems , 2000, ACM SIGOPS European Workshop.

[19]  Orran Krieger,et al.  Virtualization for high-performance computing , 2006, OPSR.

[20]  Christoph Meinel,et al.  Accurate Mutlicore Processor Power Models for Power-Aware Resource Management , 2011, 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing.

[21]  Christina Delimitrou,et al.  Quasar: resource-efficient and QoS-aware cluster management , 2014, ASPLOS.

[22]  Laxmikant V. Kalé,et al.  Variation Among Processors Under Turbo Boost in HPC Systems , 2016, ICS.

[23]  Lizy Kurian John,et al.  Run-time modeling and estimation of operating system power consumption , 2003, SIGMETRICS '03.

[24]  Jordi Torres,et al.  Energy accounting for shared virtualized environments under DVFS using PMC-based power models , 2012, Future Gener. Comput. Syst..

[25]  Natarajan Meghanathan,et al.  Virtual Machines and Networks - Installation, Performance Study, Advantages and Virtualization Options , 2011, ArXiv.

[26]  Lizy Kurian John,et al.  Complete System Power Estimation: A Trickle-Down Approach Based on Performance Events , 2007, 2007 IEEE International Symposium on Performance Analysis of Systems & Software.

[27]  Xiaohua Jia,et al.  A Tree Regression-Based Approach for VM Power Metering , 2015, IEEE Access.

[28]  村井 均,et al.  NAS Parallel Benchmarks によるHPFの評価 , 2006 .

[29]  Wolf-Dietrich Weber,et al.  Power provisioning for a warehouse-sized computer , 2007, ISCA '07.

[30]  Kevin Skadron,et al.  Using performance counters for runtime temperature sensing in high-performance processors , 2005, 19th IEEE International Parallel and Distributed Processing Symposium.

[31]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[32]  John Kubiatowicz,et al.  MARC: A Resource Consumption Modeling Service for Self-Aware Autonomous Agents , 2018, ACM Trans. Auton. Adapt. Syst..

[33]  Kresimir Mihic,et al.  A system for online power prediction in virtualized environments using gaussian mixture models , 2010, Design Automation Conference.