A new PSO-based algorithm for multi-objective optimization with continuous and discrete design variables

This paper presents a new multi-objective optimization algorithm called FC-MOPSO for optimal design of engineering problems with a small number of function evaluations. The proposed algorithm expands the main idea of the single-objective particle swarm optimization (PSO) algorithm to deal with constrained and unconstrained multi-objective problems (MOPs). FC-MOPSO employs an effective procedure in selection of the leader for each particle to ensure both diversity and fast convergence. Fifteen benchmark problems with continuous design variables are used to validate the performance of the proposed algorithm. Finally, a modified version of FC-MOPSO is introduced for handling discrete optimization problems. Its performance is demonstrated by optimizing five space truss structures. It is shown that the FC-MOPSO can effectively find acceptable approximations of Pareto fronts for structural MOPs within very limited number of function evaluations.

[1]  Shapour Azarm,et al.  Constraint handling improvements for multiobjective genetic algorithms , 2002 .

[2]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[3]  Yanglin Gong,et al.  Optimal capacity design of eccentrically braced steel frameworks using nonlinear response history analysis , 2013 .

[4]  Guolong Chen,et al.  A Discrete PSO for Multi-objective Optimization in VLSI Floorplanning , 2009, ISICA.

[5]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[6]  Chongguo Li,et al.  Diversity Metrics in Multi-objective Optimization: Review and Perspective , 2007, 2007 IEEE International Conference on Integration Technology.

[7]  Saeed Gholizadeh,et al.  Layout optimization of truss structures by hybridizing cellular automata and particle swarm optimization , 2013 .

[8]  Jie Zhang,et al.  A mixed-discrete Particle Swarm Optimization algorithm with explicit diversity-preservation , 2013 .

[9]  H. Eskandari,et al.  A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems , 2008, J. Heuristics.

[10]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[11]  Masahiro Tanaka,et al.  GA-based decision support system for multicriteria optimization , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[12]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[13]  Hojjat Adeli,et al.  Efficient optimization of space trusses , 1986 .

[14]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[15]  Ruben E. Perez,et al.  Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach , 2011 .

[16]  Dan Simon,et al.  Evolutionary Optimization Algorithms , 2013 .

[17]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[18]  Guan-Chun Luh,et al.  Multi-objective optimal design of truss structure with immune algorithm , 2004 .

[19]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[20]  Carlos A. Coello Coello,et al.  A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization , 2010 .

[21]  K. C. Seow,et al.  MULTIOBJECTIVE DESIGN OPTIMIZATION BY AN EVOLUTIONARY ALGORITHM , 2001 .

[22]  Chee Kiong Soh,et al.  Fuzzy Controlled Genetic Algorithm Search for Shape Optimization , 1996 .

[23]  Vedat Toğan,et al.  Simultaneous size, shape, and topology optimization of truss structures using integrated particle swarm optimizer , 2016 .

[24]  Victor Yepes,et al.  Multiobjective Optimization of Concrete Frames by Simulated Annealing , 2008, Comput. Aided Civ. Infrastructure Eng..

[25]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[26]  Liang Shi,et al.  Multiobjective GA optimization using reduced models , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[27]  Kalyanmoy Deb,et al.  Analysing mutation schemes for real-parameter genetic algorithms , 2014, Int. J. Artif. Intell. Soft Comput..

[28]  Jan Golinski,et al.  Optimal synthesis problems solved by means of nonlinear programming and random methods , 1970 .

[29]  Achille Messac,et al.  A multi-objective mixed-discrete particle swarm optimization with multi-domain diversity preservation , 2015, Structural and Multidisciplinary Optimization.

[30]  O. Hasançebi,et al.  Optimal design of planar and space structures with genetic algorithms , 2000 .

[31]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[32]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[33]  Siamak Talatahari,et al.  Chaotic imperialist competitive algorithm for optimum design of truss structures , 2012 .

[34]  Antonio J. Nebro,et al.  jMetal: A Java framework for multi-objective optimization , 2011, Adv. Eng. Softw..

[35]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[36]  Enrique Alba,et al.  SMPSO: A new PSO-based metaheuristic for multi-objective optimization , 2009, 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making(MCDM).

[37]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[38]  Kalyanmoy Deb,et al.  Constrained Test Problems for Multi-objective Evolutionary Optimization , 2001, EMO.

[39]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[40]  Carlos A. Coello Coello,et al.  Accelerating convergence towards the optimal pareto front , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[41]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[42]  Gary G. Yen,et al.  An Adaptive Penalty Function for Handling Constraint in Multi-objective Evolutionary Optimization , 2009 .