Au-Catalyzed [2 + 3] Annulation of Enamides with Propargyl Esters: Total Synthesis of Cephalotaxine and Cephalezomine H.

A novel Au-catalyzed [2 + 3] annulation reaction of enamides with propargyl esters has been developed, providing a new method for expeditious assembly of synthetically useful functionalized 1-azaspiro[4.4]nonane building blocks. Based on this key annulation, strategic installation of the pivotal azaspirocyclic core, followed by constructing the benzazepine unit via Witkop cyclization, led to the divergent total syntheses of cephalotaxine and cephalezomine H.

[1]  Abdullah M. Asiri,et al.  Gold-catalysed reactions of diynes. , 2016, Chemical Society reviews.

[2]  P. Chan,et al.  Gold‐Catalyzed Cycloisomerizations of 1,n‐Diyne Carbonates and Esters , 2016 .

[3]  S. Chandrasekhar,et al.  Formal Total Synthesis of (±)-Cephalotaxine and Congeners via Aryne Insertion Reaction. , 2016, Organic letters.

[4]  A. Hashmi,et al.  Gold catalysis in total synthesis - recent achievements. , 2016, Chemical Society reviews.

[5]  Sha‐Hua Huang,et al.  Nitroso-ene cyclization enabled access to 1-azaspiro[4.4]nonane and its application in a modular synthesis toward (±)-cephalotaxine , 2015 .

[6]  Linli He,et al.  Total Synthesis of [14C]‐Labelled Homoharringtonine , 2015 .

[7]  Jianhua Xiao,et al.  Stereoselectivity in N-Iminium Ion Cyclization: Development of an Efficient Synthesis of (±)-Cephalotaxine. , 2015, Organic letters.

[8]  C. Barnes,et al.  Gold catalysis: up to six new bonds by a domino [3+2]/[2+1]/[2+1] cycloaddition , 2015 .

[9]  G. Masson,et al.  Enamide Derivatives: Versatile Building Blocks for Total Synthesis , 2015, Synthesis.

[10]  P. Chan,et al.  Harnessing the Versatile Reactivity of Propargyl Alcohols and their Derivatives for Sustainable Complex Molecule Synthesis , 2015, Synlett.

[11]  Mei‐Xiang Wang Exploring tertiary enamides as versatile synthons in organic synthesis. , 2015, Chemical communications.

[12]  Feng-peng Wang,et al.  Stemona Alkaloids: Biosynthesis, Classification, and Biogenetic Relationships , 2014, Natural product communications.

[13]  G. Masson,et al.  Enamide Derivatives: Versatile Building Blocks for Highly Functionalized α,β-Substituted Amines , 2014, Synlett.

[14]  Nicolas Gigant,et al.  Direct metal-catalyzed regioselective functionalization of enamides. , 2014, Chemistry.

[15]  M. Inoue,et al.  Cu-mediated enamide formation in the total synthesis of complex peptide natural products. , 2014, Natural product reports.

[16]  Zhen Yang,et al.  Strategic innovation in the total synthesis of complex natural products using gold catalysis. , 2014, Natural product reports.

[17]  N. Iqbal,et al.  Gold(I)‐Catalysed Tandem Cyclisation of Propargyl Acetals and Vinyl Esters , 2014 .

[18]  L. Fensterbank,et al.  Molecular complexity from polyunsaturated substrates: the gold catalysis approach. , 2014, Accounts of chemical research.

[19]  T. Gaich,et al.  The Witkop cyclization: a photoinduced C-H activation of the indole system. , 2014, Angewandte Chemie.

[20]  Susan O'Brien,et al.  Homoharringtonine/omacetaxine mepesuccinate: the long and winding road to food and drug administration approval. , 2013, Clinical lymphoma, myeloma & leukemia.

[21]  Pei‐Qiang Huang,et al.  General one-pot reductive gem-bis-alkylation of tertiary lactams/amides: rapid construction of 1-azaspirocycles and formal total synthesis of (±)-cephalotaxine. , 2013, Chemistry.

[22]  V. Gevorgyan,et al.  Metal-catalyzed double migratory cascade reactions of propargylic esters and phosphates. , 2013, Chemical Society reviews.

[23]  N. Iqbal,et al.  Gold(I)‐Catalysed Alkene Cycloaddition Reactions of Propargyl Acetals , 2013 .

[24]  B. Jiang,et al.  A Formal Synthesis of (±)-Cephalotaxine via Pauson–Khand Reaction , 2013 .

[25]  Juan Feng,et al.  Formal synthesis of cephalotaxine. , 2013, The Journal of organic chemistry.

[26]  P. Renaud,et al.  Formal Synthesis of (−)-Cephalotaxine , 2012 .

[27]  Weiping Tang,et al.  Rhodium-catalyzed acyloxy migration of propargylic esters in cycloadditions, inspiration from the recent "gold rush". , 2012, Chemical Society reviews.

[28]  Hajer Abdelkafi,et al.  Natural products from Cephalotaxus sp.: chemical diversity and synthetic aspects. , 2012, Natural product reports.

[29]  Xingbo Liu,et al.  "Silver effect" in gold(I) catalysis: an overlooked important factor. , 2012, Journal of the American Chemical Society.

[30]  Y. Tu,et al.  Formal synthesis of (-)-cephalotaxine based on a tandem hydroamination/semipinacol rearrangement reaction. , 2012, Chemistry, an Asian journal.

[31]  G. Dake Enamides and Related FunctionalGroups as Nucleophilic Components in Ring-Forming Processes Catalyzedby Electrophilic Metal Salts , 2012 .

[32]  J. Mascareñas,et al.  Recent developments in gold-catalyzed cycloaddition reactions , 2011, Beilstein journal of organic chemistry.

[33]  A. Slawin,et al.  The role of silver additives in gold-mediated C–H functionalisation , 2011, Beilstein journal of organic chemistry.

[34]  A. Fiksdahl,et al.  Gold(I)‐Catalyzed Reactions of Propargyl Esters with Vinyl Derivatives , 2011 .

[35]  Henri B Kagan,et al.  Use of nonfunctionalized enamides and enecarbamates in asymmetric synthesis. , 2011, Chemical reviews.

[36]  C. Nevado,et al.  Gold-catalyzed cyclopenta- and cycloheptannulation cascades: a stereocontrolled approach to the scaffold of frondosins A and B. , 2011, Angewandte Chemie.

[37]  R. Pilli,et al.  The chemistry of Stemona alkaloids: An update. , 2010, Natural product reports.

[38]  J. G. Vries,et al.  Rapid Identification of a Scalable Catalyst for the Asymmetric Hydrogenation of a Sterically Demanding Aryl Enamide , 2010 .

[39]  M. R. Gagné,et al.  Dinuclear gold-silver resting states may explain silver effects in gold(I)-catalysis. , 2009, Organic letters.

[40]  T. Taniguchi,et al.  Asymmetric total synthesis and revised structure of cephalezomine H. , 2009, The Journal of organic chemistry.

[41]  D. Carbery Enamides: valuable organic substrates. , 2008, Organic & biomolecular chemistry.

[42]  R. Matsubara,et al.  Enamides and enecarbamates as nucleophiles in stereoselective C-C and C-N bond-forming reactions. , 2008, Accounts of chemical research.

[43]  S. Nolan,et al.  Propargylic esters in gold catalysis: access to diversity. , 2007, Angewandte Chemie.

[44]  E. Soriano,et al.  Recent developments in the metal-catalyzed reactions of metallocarbenoids from propargylic esters. , 2007, Chemistry.

[45]  S. Arora,et al.  Crystal and molecular structure of cephalotaxine p-bromobenzoate. , 1974, The Journal of organic chemistry.

[46]  M. Semmelhack,et al.  Total synthesis of cephalotaxus alkaloids. , 1972, Journal of the American Chemical Society.

[47]  S. Weinreb,et al.  The total synthesis of cephalotaxine. , 1972, Journal of the American Chemical Society.

[48]  G. Kerley,et al.  The Alkaloids of Cephalotaxus drupacea and Cephalotaxus fortunei , 1963 .

[49]  T. Yakura,et al.  Total synthesis of (±)-cephalotaxine , 1990 .