A comprehensive and quantitative review of dark fermentative biohydrogen production

Biohydrogen production (BHP) can be achieved by direct or indirect biophotolysis, photo-fermentation and dark fermentation, whereof only the latter does not require the input of light energy. Our motivation to compile this review was to quantify and comprehensively report strains and process performance of dark fermentative BHP. This review summarizes the work done on pure and defined co-culture dark fermentative BHP since the year 1901. Qualitative growth characteristics and quantitative normalized results of H2 production for more than 2000 conditions are presented in a normalized and therefore comparable format to the scientific community.Statistically based evidence shows that thermophilic strains comprise high substrate conversion efficiency, but mesophilic strains achieve high volumetric productivity. Moreover, microbes of Thermoanaerobacterales (Family III) have to be preferred when aiming to achieve high substrate conversion efficiency in comparison to the families Clostridiaceae and Enterobacteriaceae.The limited number of results available on dark fermentative BHP from fed-batch cultivations indicates the yet underestimated potential of this bioprocessing application. A Design of Experiments strategy should be preferred for efficient bioprocess development and optimization of BHP aiming at improving medium, cultivation conditions and revealing inhibitory effects. This will enable comparing and optimizing strains and processes independent of initial conditions and scale.

[1]  Debabrata Das,et al.  Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. , 2001 .

[2]  M R Barer,et al.  Bacterial viability and culturability. , 1999, Advances in microbial physiology.

[3]  C. Chou,et al.  Fedbatch Operation Using Clostridium acetobutylicum Suspension Culture as Biocatalyst for Enhancing Hydrogen Production , 2003, Biotechnology progress.

[4]  J. Zeikus,et al.  Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum , 1977, Applied and environmental microbiology.

[5]  P. Lindblad,et al.  Cyanobacterial H2 production — a comparative analysis , 2004, Planta.

[6]  Jo‐Shu Chang,et al.  Relationship among growth parameters for Clostridium butyricum, hydA gene expression, and biohydrogen production in a sucrose-supplemented batch reactor , 2008, Applied Microbiology and Biotechnology.

[7]  Heung-Joo Kim,et al.  Metabolic-flux analysis of hydrogen production pathway in Citrobacter amalonaticus Y19 , 2008 .

[8]  P. Dimroth,et al.  A Membrane-Bound NAD(P)+-Reducing Hydrogenase Provides Reduced Pyridine Nucleotides during Citrate Fermentation by Klebsiella pneumoniae , 1999, Journal of bacteriology.

[9]  D. Lee,et al.  The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. , 2008, Bioresource technology.

[10]  Lawrence Pitt,et al.  Biohydrogen production: prospects and limitations to practical application , 2004 .

[11]  A. Oren Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached gas vacuoles , 1983, Archives of Microbiology.

[12]  D. S. Williams,et al.  Clostridium aldrichii sp. nov., a cellulolytic mesophile inhabiting a wood-fermenting anaerobic digester. , 1990, International journal of systematic bacteriology.

[13]  Zhong Hu,et al.  Statistical optimization of fermentative hydrogen production from xylose by newly isolated Enterobacter sp. CN1 , 2010 .

[14]  Dipankar Ghosh,et al.  Response surface methodology for process parameter optimization of hydrogen yield by the metabolically engineered strain Escherichia coli DJT135. , 2010, Bioresource technology.

[15]  Datta Madamwar,et al.  Cyanobacterial hydrogen production , 2000 .

[16]  A. Gehin,et al.  Studies of Clostridium cellulolyticum ATCC 35319 under dialysis and co‐culture conditions , 1996, Letters in applied microbiology.

[17]  Anish Kumar,et al.  Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11. , 2006, Canadian journal of microbiology.

[18]  B. Patel,et al.  Caldicellulosiruptor owensensis sp. nov., an anaerobic, extremely thermophilic, xylanolytic bacterium. , 1998, International journal of systematic bacteriology.

[19]  F. Sargent,et al.  Inactivation of the Escherichia coli K-12 twin-arginine translocation system promotes increased hydrogen production. , 2006, FEMS microbiology letters.

[20]  V C Kalia,et al.  Frementation of biowaste to H2 by Bacillus licheniformis , 1994, World journal of microbiology & biotechnology.

[21]  Hong-Wei Hou,et al.  Enhanced cellulose-hydrogen production from corn stalk by lesser panda manure , 2008 .

[22]  R. Mah,et al.  Isolation and Characterization of Haloanaerobacter chitinovorans gen. nov., sp. nov., a Halophilic, Anaerobic, Chitinolytic Bacterium from a Solar Saltern , 1992, Applied and environmental microbiology.

[23]  A. Kistner,et al.  CELLULOLYTIC COCCI OCCURRING IN THE RUMEN OF SHEEP CONDITIONED TO LUCERNE HAY. , 1964, Journal of general microbiology.

[24]  T. Wood,et al.  Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 , 2007, BMC biotechnology.

[25]  Jo‐Shu Chang,et al.  Using a starch-rich mutant of Arabidopsis thaliana as feedstock for fermentative hydrogen production. , 2011, Bioresource technology.

[26]  Dae Sung Lee,et al.  Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods. , 2008, Bioresource technology.

[27]  Yutaka Nakashimada,et al.  Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes , 1997 .

[28]  K. Sakka,et al.  Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M-21. , 2001, Journal of bioscience and bioengineering.

[29]  R. Nandi,et al.  Microbial production of hydrogen: an overview. , 1998, Critical reviews in microbiology.

[30]  Heguang Zhu,et al.  Hydrogen production by four cultures with participation by anoxygenic phototrophic bacterium and anaerobic bacterium in the presence of NH4 , 2001 .

[31]  Heguang Zhu,et al.  Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides , 2006 .

[32]  Yutaka Nakashimada,et al.  High-yield production of hydrogen by Enterobacter aerogenes mutants with decreased alpha-acetolactate synthase activity. , 2004, Journal of bioscience and bioengineering.

[33]  Ioannis V. Skiadas,et al.  Biohydrogen production from sweet sorghum biomass using mixed acidogenic cultures and pure cultures of Ruminococcus albus. , 2007 .

[34]  C. Saint,et al.  The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge , 2007, Journal of applied microbiology.

[35]  W. Buckel,et al.  Fermentation of trans-aconitate via citrate, oxaloacetate, and pyruvate by Acidaminococcus fermentans , 1996, Archives of Microbiology.

[36]  Ana G. Pereira-Medrano,et al.  Engineering a non-native hydrogen production pathway into Escherichia coli via a cyanobacterial [NiFe] hydrogenase. , 2011, Metabolic engineering.

[37]  B. Kalala,et al.  Biohydrogen production by Enterobacter cloacae and Citrobacter freundii in carrier induced granules , 2008, Biotechnology Letters.

[38]  K. Chung Inhibitory effects of H2 on growth of Clostridium cellobioparum , 1976, Applied and environmental microbiology.

[39]  Jun Hirose,et al.  Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39 , 1995 .

[40]  M. P. Bryant,et al.  Glucose Fermentation Products of Ruminococcus albus Grown in Continuous Culture with Vibrio succinogenes: Changes Caused by Interspecies Transfer of H2 , 1973, Journal of bacteriology.

[41]  Patrik R. Jones,et al.  Deletion of iscR stimulates recombinant clostridial Fe–Fe hydrogenase activity and H2-accumulation in Escherichia coli BL21(DE3) , 2008, Applied Microbiology and Biotechnology.

[42]  R. Thauer,et al.  The energy metabolism of Clostridium kluyveri. , 1968, European journal of biochemistry.

[43]  T. Fukui,et al.  Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. , 2005, Journal of biotechnology.

[44]  B. Tindall,et al.  A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen. nov., comb. nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov. , 1999, International journal of systematic bacteriology.

[45]  B. Ahring,et al.  Reclassification of Thermoanaerobium acetigenum as Caldicellulosiruptor acetigenus comb. nov. and emendation of the genus description. , 2006, International journal of systematic and evolutionary microbiology.

[46]  H. Purohit,et al.  Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. , 2008, Bioresource technology.

[47]  E. Bonch‐Osmolovskaya,et al.  Thermanaerovibrio velox sp. nov., a new anaerobic, thermophilic, organotrophic bacterium that reduces elemental sulfur, and emended description of the genus Thermanaerovibrio. , 2000, International journal of systematic and evolutionary microbiology.

[48]  Zsófia Kádár,et al.  Hydrogen production from paper sludge hydrolysate , 2003, Applied biochemistry and biotechnology.

[49]  W. Su,et al.  Growth and gas production for hyperthermophilic archaebacterium, Pyrococcus furiosus , 1989, Biotechnology and bioengineering.

[50]  Qi Yang,et al.  Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. , 2008, Bioresource technology.

[51]  Jianping Xu,et al.  INVITED REVIEW: Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances , 2006, Molecular ecology.

[52]  Jo-Shu Chang,et al.  Biohydrogen production from cellulosic hydrolysate produced via temperature-shift-enhanced bacterial cellulose hydrolysis. , 2009, Bioresource technology.

[53]  J. Wiegel,et al.  Elucidation of Enzymes in Fermentation Pathways Used by Clostridium thermosuccinogenes Growing on Inulin , 2000, Applied and Environmental Microbiology.

[54]  Dae Sung Lee,et al.  Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. , 2008, Bioresource technology.

[55]  Microbial production of hydrogen from sugarcane bagasse using Bacillus sp. , 2009 .

[56]  Michael Kornaros,et al.  Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus , 2008 .

[57]  D. Valentine,et al.  Pure-Culture Growth of Fermentative Bacteria, Facilitated by H2 Removal: Bioenergetics and H2 Production , 2006, Applied and Environmental Microbiology.

[58]  Hongzhang Chen,et al.  Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation , 2007 .

[59]  R. Mitchell,et al.  Continuous hydrogen and butyric acid fermentation by immobilized Clostridium tyrobutyricum ATCC 25755: effects of the glucose concentration and hydraulic retention time. , 2009, Bioresource technology.

[60]  B. Patel,et al.  Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and an emended description of Thermoanaerobacter brockii. , 1995, International journal of systematic bacteriology.

[61]  L. Bicelli,et al.  Hydrogen: A clean energy source , 1986 .

[62]  Bruno Fabiano,et al.  Process development of continuous hydrogen production by Enterobacter aerogenes in a packed column reactor , 2000 .

[63]  H. Yokoi,et al.  Microbial production of hydrogen from starch-manufacturing wastes , 2002 .

[64]  F. Glöckner,et al.  Dethiosulfovibrio russensis sp. nov., Dethosulfovibrio marinus sp. nov. and Dethosulfovibrio acidaminovorans sp. nov., novel anaerobic, thiosulfate- and sulfur-reducing bacteria isolated from 'Thiodendron' sulfur mats in different saline environments. , 2001, International journal of systematic and evolutionary microbiology.

[65]  Jo-Shu Chang,et al.  Sequential dark–photo fermentation and autotrophic microalgal growth for high-yield and CO2-free biohydrogen production , 2010 .

[66]  Bruno Fabiano,et al.  Experimental study of hydrogen kinetics from agroindustrial by-product: Optimal conditions for production and fuel cell feeding , 1998 .

[67]  C Herwig,et al.  On-line stoichiometry and identification of metabolic state under dynamic process conditions. , 2001, Biotechnology and bioengineering.

[68]  H Alshiyab,et al.  Removal of headspace CO2 increases biological hydrogen production by C. acetobutylicum. , 2008, Pakistan journal of biological sciences : PJBS.

[69]  Jianlong Wang,et al.  Optimization of fermentative hydrogen production process by response surface methodology , 2008 .

[70]  Matthew R Melnicki,et al.  Integrated biological hydrogen production , 2006 .

[71]  W. Buckel,et al.  Sodium ion-dependent hydrogen production in Acidaminococcus fermentans , 1996, Archives of Microbiology.

[72]  M. Karp,et al.  Hydrogen production from glycerol using halophilic fermentative bacteria. , 2010, Bioresource technology.

[73]  B. Patel,et al.  Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. , 1994, International journal of systematic bacteriology.

[74]  P. De Vos,et al.  The fermentation of glycerol byClostridium butyricum LMG 1212t2 and 1213t1 andC. pasteurianum LMG 3285 , 1991, Applied Microbiology and Biotechnology.

[75]  K. Bagramyan,et al.  Formate Hydrogenlyase Is Needed for Proton-Potassium Exchange Through the F0F1-ATPase and the TrkA System in Anaerobically Grown and Glycolysing Escherichia coli , 1997, Current Microbiology.

[76]  P. Janssen,et al.  Glucose catabolism by Spirochaeta thermophila RI 19.B1 , 1992, Journal of bacteriology.

[77]  T. Park,et al.  Fermentative hydrogen production by the newly isolated Enterobacter asburiae SNU-1 , 2007 .

[78]  B. Patel,et al.  Effect of thiosulphate as electron acceptor on glucose and xylose oxidation by Thermoanaerobacter finnii and a Thermoanaerobacter sp. isolated from oil field water. , 1996, Research in microbiology.

[79]  J. Andrade,et al.  Regulation of Carbon and Electron Flow inClostridium butyricum VPI 3266 Grown on Glucose-Glycerol Mixtures , 2001, Journal of bacteriology.

[80]  A. Blackwood,et al.  DISSIMILATION OF GLUCOSE AT CONTROLLED pH VALUES BY PIGMENTED AND NON-PIGMENTED STRAINS OF ESCHERICHIA COLI , 1956, Journal of Bacteriology.

[81]  Jo‐Shu Chang,et al.  Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp. TCW1. , 2011, Bioresource technology.

[82]  A. Steinbüchel,et al.  Hydrogen evolution by strictly aerobic hydrogen bacteria under anaerobic conditions , 1984, Journal of bacteriology.

[83]  R. Ludwig,et al.  Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst , 2011, Science.

[84]  Richard Sparling,et al.  Hydrogen production from inhibited anaerobic composters , 1997 .

[85]  J. Nielsen,et al.  Bioreaction Engineering Principles , 1994, Springer US.

[86]  Y. Oh,et al.  Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation , 2008 .

[87]  Paul De Vos,et al.  Lactate and ethanol dehydrogenase activities in continuous cultures of Clostridium thermosaccharolyticum LMG 6564 , 1990 .

[88]  B. White,et al.  Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. , 2001, International journal of systematic and evolutionary microbiology.

[89]  T. Miller,et al.  Molybdate and sulfide inhibit H2 and increase formate production from glucose by Ruminococcus albus , 1980, Archives of Microbiology.

[90]  R. E. Hungate Studies on Cellulose Fermentation , 1944, Journal of bacteriology.

[91]  Z. Ren,et al.  Characterization of the cellulolytic and hydrogen‐producing activities of six mesophilic Clostridium species , 2007, Journal of applied microbiology.

[92]  Debabrata Das,et al.  Improvement of fermentative hydrogen production: various approaches , 2004, Applied Microbiology and Biotechnology.

[93]  X. Xing,et al.  Rapid detection of a gfp-marked Enterobacter aerogenes under anaerobic conditions by aerobic fluorescence recovery. , 2005, FEMS microbiology letters.

[94]  N. Ren,et al.  Molecular Characterization and Hydrogen Production of a New Species of Anaerobe , 2005, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[95]  N. T. Eriksen,et al.  Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana , 2007, Biotechnology Letters.

[96]  K. Bagramyan,et al.  The roles of hydrogenases 3 and 4, and the F0F1‐ATPase, in H2 production by Escherichia coli at alkaline and acidic pH , 2002, FEBS letters.

[97]  N. Mizukami,et al.  Microbial conversion of arabinose and xylose to hydrogen by a newly isolated Clostridium sp. No. 2 , 1994 .

[98]  Byung Hoon Jo,et al.  Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli , 2010, Microbial cell factories.

[99]  Shigeharu Tanisho,et al.  Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks , 1995 .

[100]  J. M. Park,et al.  Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli , 2011, Biotechnology and bioengineering.

[101]  A. Harden LXIV.—The chemical action of Bacillus coli communis and similar organisms on carbohydrates and allied compounds , 1901 .

[102]  H. Kaspar,et al.  Palladium-Mediated Hydrogenation of Unsaturated Hydrocarbons with Hydrogen Gas Released during Anaerobic Cellulose Degradation , 1986, Applied and environmental microbiology.

[103]  M. Karp,et al.  Biohydrogen production in alkalithermophilic conditions: Thermobrachium celere as a case study. , 2011, Bioresource technology.

[104]  J. Wiegel,et al.  Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum , 1979, Journal of bacteriology.

[105]  M. Wolin,et al.  Influence of heme and vitamin B12 on growth and fermentations of Bacteroides species , 1981, Journal of bacteriology.

[106]  D. Levin Re: Biohydrogen Production: Prospects and Limitations to Practical Application-Erratum , 2004 .

[107]  F. Sargent,et al.  Towards an integrated system for bio-energy: hydrogen production by Escherichia coli and use of palladium-coated waste cells for electricity generation in a fuel cell , 2010, Biotechnology Letters.

[108]  Anish Kumar,et al.  Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11 , 2005, Applied Microbiology and Biotechnology.

[109]  Kenji Morimoto,et al.  Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. , 2005, FEMS microbiology letters.

[110]  Dae Sung Lee,et al.  Statistical optimization of key process variables for enhanced hydrogen production by newly isolated Clostridium tyrobutyricum JM1 , 2008 .

[111]  Lynne E. Macaskie,et al.  A two-stage, two-organism process for biohydrogen from glucose , 2006 .

[112]  Robert S. Cherry,et al.  A hydrogen utopia , 2004 .

[113]  P. Hallenbeck,et al.  The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli , 2006 .

[114]  Xiuzhu Dong,et al.  Sporacetigenium mesophilum gen. nov., sp. nov., isolated from an anaerobic digester treating municipal solid waste and sewage. , 2006, International journal of systematic and evolutionary microbiology.

[115]  Yuzuru Takamura,et al.  Development of a compact high-density microbial hydrogen reactor for portable bio-fuel cell system , 2006 .

[116]  N. A. Kostrikina,et al.  Anaerobic, alkaliphilic, saccharolytic bacterium Alkalibacter saccharofermentans gen. nov., sp. nov. from a soda lake in the Transbaikal region of Russia , 2004, Extremophiles.

[117]  R. Hungate Microorganisms in the rumen of cattle fed a constant ration. , 1957, Canadian journal of microbiology.

[118]  R. Gonzalez,et al.  Fermentative Utilization of Glycerol by Escherichia coli and Its Implications for the Production of Fuels and Chemicals , 2007, Applied and Environmental Microbiology.

[119]  Jean-Paul Schwitzguébel,et al.  Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose , 2004 .

[120]  B. Patel,et al.  Fusibacter paucivorans gen. nov., sp. nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. , 1999, International journal of systematic bacteriology.

[121]  B. Patel,et al.  Fewidobacterium gondwanense sp . nov . , a New Thermophilic Anaerobic Bacterium Isolated from Nonvolcanically Heated Geothermal Waters of the Great Artesian Basin of Australia , 2008 .

[122]  S. Zinder,et al.  The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production , 2009, Biotechnology progress.

[123]  Bo Jin,et al.  Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. , 2009, Journal of bioscience and bioengineering.

[124]  Jun Hirose,et al.  Hydrogen production by immobilized cells of aciduric Enterobacter aerogenes strain HO-39☆ , 1997 .

[125]  Byung Hong Kim,et al.  A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell , 2001 .

[126]  Wan-Qian Guo,et al.  Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16 , 2009 .

[127]  C. Saint,et al.  Genetic manipulation of butyrate formation pathways in Clostridium butyricum. , 2011, Journal of biotechnology.

[128]  Bruno Fabiano,et al.  Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes , 2002 .

[129]  D. Gilmour,et al.  Physiological response of the unicellular green alga Chlorococcum submarinum to rapid changes in salinity , 1991, Archives of Microbiology.

[130]  P. Claassen,et al.  Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana , 2009, Biotechnology for biofuels.

[131]  G. Diekert,et al.  Nickel requirement of Acetobacterium woodii , 1982, Journal of bacteriology.

[132]  L. Ljungdahl,et al.  Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium , 1981, Archives of Microbiology.

[133]  C. Anthony,et al.  Roles for enteric d-type cytochrome oxidase in N2 fixation and microaerobiosis , 1990, Journal of bacteriology.

[134]  Kevin T. Finneran,et al.  Influence of Reduced Electron Shuttling Compounds on Biological H2 Production in the Fermentative Pure Culture Clostridium beijerinckii , 2007, Current Microbiology.

[135]  Jie Ding,et al.  Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology. , 2009, Bioresource technology.

[136]  B. Patel,et al.  Haloanaerobium alcaliphilum sp. nov., an anaerobic moderate halophile from the sediments of Great Salt Lake, Utah. , 1995, International journal of systematic bacteriology.

[137]  T. Wood,et al.  An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol. , 2010, Biochemical and Biophysical Research Communications - BBRC.

[138]  B. Schink,et al.  Clostridium homopropionicum sp. nov., a new strict anaerobe growing with 2-, 3-, or 4-hydroxybutyrate , 1990, Archives of Microbiology.

[139]  P. Lindblad,et al.  A brief look at three decades of research on cyanobacterial hydrogen evolution , 2002 .

[140]  P. Schönheit,et al.  Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway , 1994, Archives of Microbiology.

[141]  Bo Jin,et al.  Impact of carbon and nitrogen sources on hydrogen production by a newly isolated Clostridium butyricum W5 , 2008 .

[142]  Richard Sparling,et al.  Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405 , 2006, Applied Microbiology and Biotechnology.

[143]  Duu-Jong Lee,et al.  Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16 , 2008 .

[144]  S. Tanisho,et al.  Effects of Formate on Fermentative Hydrogen Production by Enterobacter aerogenes , 2005, Marine Biotechnology.

[145]  M. Inui,et al.  Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process , 2007, Applied Microbiology and Biotechnology.

[146]  S. Tanisho,et al.  Effect of CO2 removal on hydrogen production by fermentation , 1998 .

[147]  E G Koukios,et al.  Fermentative hydrogen production from pretreated biomass: a comparative study. , 2009, Bioresource technology.

[148]  J. Zeikus,et al.  Ethanol Production by Thermophilic Bacteria: Fermentation of Cellulosic Substrates by Cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum , 1981, Applied and environmental microbiology.

[149]  Walid M. Alalayah,et al.  Bio-hydrogen production using a two-stage fermentation process. , 2009, Pakistan journal of biological sciences : PJBS.

[150]  Nanqi Ren,et al.  Influence of gaseous end-products inhibition and nutrient limitations on the growth and hydrogen production by hydrogen-producing fermentative bacterial B49 , 2007 .

[151]  Jo‐Shu Chang,et al.  Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge , 2005 .

[152]  Z. Bagi,et al.  Utilization of keratin-containing biowaste to produce biohydrogen , 2005, Applied Microbiology and Biotechnology.

[153]  Nazim Cicek,et al.  Potential for hydrogen and methane production from biomass residues in Canada. , 2007, Bioresource technology.

[154]  D. Das,et al.  Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. , 2007, Bioresource technology.

[155]  Debabrata Das,et al.  Redirection of biochemical pathways for the enhancement of H2 production by Enterobacter cloacae , 2001, Biotechnology Letters.

[156]  V. Varel Reisolation and characterization of Clostridium longisporum, a ruminal sporeforming cellulolytic anaerobe , 2004, Archives of Microbiology.

[157]  J. Lay,et al.  Flow-FISH analysis and isolation of clostridial strains in an anaerobic semi-solid bio-hydrogen producing system by hydrogenase gene target , 2007, Applied Microbiology and Biotechnology.

[158]  Pan Zhao,et al.  Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3 , 2008 .

[159]  W. Yusoff,et al.  Effect of salts addition on hydrogen production by C. acetobutylicum. , 2008, Pakistan journal of biological sciences : PJBS.

[160]  J. Ralph,et al.  Formation of formate and hydrogen, and flux of reducing equivalents and carbon in Ruminococcus flavefaciens Fd-1 , 1997, Antonie van Leeuwenhoek.

[161]  B. Patel,et al.  Clostridium methoxybenzovorans sp. nov., a new aromatic o-demethylating homoacetogen from an olive mill wastewater treatment digester. , 1999, International journal of systematic bacteriology.

[162]  M. Inui,et al.  Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichiacoli strains , 2006, Applied Microbiology and Biotechnology.

[163]  K. Hara,et al.  Continuous hydrogen production by Clostridium sp. strain no. 2 from cellulose hydrolysate in an aqueous two-phase system☆ , 1996 .

[164]  John R. Benemann,et al.  Hydrogen production by microalgae , 2000, Journal of Applied Phycology.

[165]  S. Leschine,et al.  Clostridium hungatei sp. nov., a mesophilic, N2-fixing cellulolytic bacterium isolated from soil. , 2001, International journal of systematic and evolutionary microbiology.

[166]  Gang Wang,et al.  Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures , 2006 .

[167]  K. Sakka,et al.  Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium. , 2000, Journal of bioscience and bioengineering.

[168]  B. Chang,et al.  Producing hydrogen from wastewater sludge by Clostridium bifermentans. , 2003, Journal of biotechnology.

[169]  Debabrata Das,et al.  Kinetics of two-stage fermentation process for the production of hydrogen , 2008 .

[170]  Jo-Shu Chang,et al.  Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. , 2008, Bioresource technology.

[171]  Ahmad A. Zeidan,et al.  A quantitative analysis of hydrogen production efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT , 2010 .

[172]  T. Park,et al.  Hydrogen production from formic acid in pH-stat fed-batch operation for direct supply to fuel cell. , 2010, Bioresource technology.

[173]  Jo‐Shu Chang,et al.  Multicomponent cellulase production by Cellulomonas biazotea NCIM‐2550 and its applications for cellulosic biohydrogen production , 2009, Biotechnology progress.

[174]  H Yokoi,et al.  Microbial hydrogen production from sweet potato starch residue. , 2001, Journal of bioscience and bioengineering.

[175]  Naoki Mizukami,et al.  Isolation of a hydrogen-producing bacterium, Clostridium beijerinckii strain AM21B, from termites , 1993 .

[176]  T. Wood,et al.  Protein Engineering of the Transcriptional Activator FhlA To Enhance Hydrogen Production in Escherichia coli , 2009, Applied and Environmental Microbiology.

[177]  L. Whang,et al.  Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum: The effects of hydraulic retention time and peptone addition. , 2011, Bioresource technology.

[178]  D. Lovley,et al.  Growth of Geobacter sulfurreducens with Acetate in Syntrophic Cooperation with Hydrogen-Oxidizing Anaerobic Partners , 1998, Applied and Environmental Microbiology.

[179]  Jo‐Shu Chang,et al.  Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. , 2008, Water research.

[180]  H. Biebl,et al.  Propionispora vibrioides, nov. gen., nov. sp., a new gram-negative, spore-forming anaerobe that ferments sugar alcohols , 2000, Archives of Microbiology.

[181]  J. Breznak,et al.  Morphology and physiology of Spirochaeta aurantia strains isolated from aquatic habitats , 1975, Archives of Microbiology.

[182]  Byung Hoon Jo,et al.  Production of biohydrogen by heterologous expression of oxygen-tolerant Hydrogenovibrio marinus [NiFe]-hydrogenase in Escherichia coli. , 2011, Journal of biotechnology.

[183]  A. Converti,et al.  Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations , 2002, Applied Microbiology and Biotechnology.

[184]  S.J.J. Lips,et al.  Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana , 2010 .

[185]  S. Tanisho,et al.  Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes , 1994 .

[186]  S. Yeom,et al.  Comparison of hydrogen production by four representative hydrogen-producing bacteria , 2008 .

[187]  P. Claassen,et al.  Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii , 2002 .

[188]  D. Kleiner,et al.  A putative new endophytic nitrogen‐fixing bacterium Pantoea sp. from sugarcane , 2004, Journal of applied microbiology.

[189]  C. Posten,et al.  Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol. , 1995, Journal of biotechnology.

[190]  B. Patel,et al.  Clostridium peptidivorans sp. nov., a peptide-fermenting bacterium from an olive mill wastewater treatment digester. , 2000, International journal of systematic and evolutionary microbiology.

[191]  K. Stetter,et al.  Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C , 1986, Archives of Microbiology.

[192]  Daniel C. Ducat,et al.  Insulation of a synthetic hydrogen metabolism circuit in bacteria , 2010, Journal of biological engineering.

[193]  N. Ren,et al.  Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49. , 2009, Bioresource technology.

[194]  P. Hallenbeck,et al.  Hydrogen production by continuous cultures of Escherchia coli under different nutrient regimes , 2008 .

[195]  N. Mizukami,et al.  Direct conversion of cellulosic materials to hydrogen by Clostridium sp. strain no. 2 , 1995 .

[196]  C. Woese,et al.  Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine. , 1999, International journal of systematic bacteriology.

[197]  Emmanuel Guedon,et al.  Improvement of Cellulolytic Properties of Clostridium cellulolyticum by Metabolic Engineering , 2002, Applied and Environmental Microbiology.

[198]  J. Bockris,et al.  The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment , 2002 .

[199]  E. Bonch‐Osmolovskaya,et al.  Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. , 1999, International journal of systematic bacteriology.

[200]  A. Stams,et al.  Selenomonas acidaminovorans sp. nov., a versatile thermophilic proton-reducing anaerobe able to grow by decarboxylation of succinate to propionate , 1992, Archives of Microbiology.

[201]  J. Heider,et al.  Effects of elemental sulfur on the metabolism of the deep-sea hyperthermophilic archaeon Thermococcus strain ES-1: characterization of a sulfur-regulated, non-heme iron alcohol dehydrogenase , 1995, Journal of bacteriology.

[202]  B. Patel,et al.  Characterization of a new xylanolytic bacterium, Clostridium xylanovorans sp. nov. , 1999, Systematic and applied microbiology.

[203]  J. Brosseau,et al.  Microbial hydrogen production from replenishable resources , 1979 .

[204]  R. Sparling,et al.  Continuous hydrogen production during fermentation of α‐cellulose by the thermophillic bacterium Clostridium thermocellum , 2009, Biotechnology and bioengineering.

[205]  M. Wolin,et al.  Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium , 1977, Applied and environmental microbiology.

[206]  B. Schink Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds , 2004, Archives of Microbiology.

[207]  S. Haruta,et al.  Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora. , 2001, Journal of bioscience and bioengineering.

[208]  Wen-Song Tan,et al.  Effect of culture conditions on producing and uptake hydrogen flux of biohydrogen fermentation by metabolic flux analysis method. , 2011, Bioresource technology.

[209]  Rohit Ghai,et al.  Mining genomic databases to identify novel hydrogen producers. , 2003, Trends in biotechnology.

[210]  Jo-Shu Chang,et al.  Biohydrogen production using sequential two-stage dark and photo fermentation processes , 2008 .

[211]  J. Breznak,et al.  Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites , 1977, Applied and environmental microbiology.

[212]  B. Ollivier,et al.  Involvement of a single periplasmic hydrogenase for both hydrogen uptake and production in some Desulfovibrio species. , 1995, Research in microbiology.

[213]  Ahmad A. Zeidan,et al.  Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars , 2009 .

[214]  Ling Yuan,et al.  Increased Hydrogen Production by Genetic Engineering of Escherichia coli , 2009, PloS one.

[215]  M. Ngadi,et al.  Biosynthesis of Ethanol and Hydrogen by Glycerol Fermentation Using Escherichia coli , 2011 .

[216]  N. Nishio,et al.  Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor , 1998, Applied Microbiology and Biotechnology.

[217]  Jun Hirose,et al.  H production by immobilized cells of Clostridium butyricum on porous glass beads , 1997 .

[218]  L. Chadwick,et al.  Hydrogen Gas Production by an Ectothiorhodospira vacuolata Strain , 1991, Applied and environmental microbiology.

[219]  B. Ahring,et al.  Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland , 1997, Archives of Microbiology.

[220]  M. Seki,et al.  Hydrogen Production from Glucose by Anaerobes , 2005, Biotechnology progress.

[221]  Zsófia Kádár,et al.  Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus , 2004, Applied biochemistry and biotechnology.

[222]  N. Ren,et al.  Ethanoligenens harbinense gen. nov., sp. nov., isolated from molasses wastewater. , 2006, International journal of systematic and evolutionary microbiology.

[223]  J. Wiegel,et al.  Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile. , 1994, International journal of systematic bacteriology.

[224]  Duu-Jong Lee,et al.  Biohydrogen production from cellobiose in phenol and cresol-containing medium using Clostridium sp. R1 , 2010 .

[225]  E. Crabbe,et al.  Influence of initial pH on hydrogen production from cheese whey. , 2005, Journal of biotechnology.

[226]  Yinbo Qu,et al.  Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17 , 2008 .

[227]  S. E. Nokes,et al.  Metabolic selectivity and growth of Clostridium thermocellum in continuous culture under elevated hydrostatic pressure , 2004, Applied Microbiology and Biotechnology.

[228]  A. Bernalier-Donadille,et al.  H2 and acetate transfers during xylan fermentation between a butyrate-producing xylanolytic species and hydrogenotrophic microorganisms from the human gut. , 2006, FEMS microbiology letters.

[229]  Shigeharu Tanisho,et al.  Fermentative hydrogen evolution by Enterobacter aerogenes strain E.82005 , 1987 .

[230]  Y Y Li,et al.  Continuous hydrogen production from organic waste. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[231]  B. Ollivier,et al.  Clostridium caminithermale sp. nov., a slightly halophilic and moderately thermophilic bacterium isolated from an Atlantic deep-sea hydrothermal chimney. , 2003, International journal of systematic and evolutionary microbiology.

[232]  L. H. Stickland The bacterial decomposition of formic acid. , 1929, The Biochemical journal.

[233]  G. Rákhely,et al.  Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies , 2009 .

[234]  B. Logan,et al.  Removal of headspace CO2 increases biological hydrogen production. , 2005, Environmental science & technology.

[235]  Xiaobing Wu,et al.  Enhanced H2 gas production from bagasse using adhE inactivated Klebsiella oxytoca HP1 by sequential dark-photo fermentations. , 2010, Bioresource technology.

[236]  P. Soucaille,et al.  Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol , 1994, Journal of bacteriology.

[237]  Liying Xu,et al.  Biohydrogen production by Ethanoligenens harbinense B49: Nutrient optimization , 2008 .

[238]  B. Himelbloom,et al.  Clostridium methylpentosum sp. nov.: a ring-shaped intestinal bacterium that ferments only methylpentoses and pentoses , 2004, Archives of Microbiology.

[239]  K. Ma,et al.  Minimal sulfur requirement for growth and sulfur-dependent metabolism of the hyperthermophilic archaeon Staphylothermus marinus. , 2003, Archaea.

[240]  J. Podestá,et al.  Electrochemical measurement of trace concentrations of biological hydrogen produced by Enterobacteriaceae. , 1997, Research in microbiology.

[241]  N. Ács,et al.  Exploitation of the extremely thermophilic Caldicellulosiruptor saccharolyticus in hydrogen and biogas production from biomasses , 2010, Environmental technology.

[242]  Debabrata Das,et al.  Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. , 2000 .

[243]  B. Methé,et al.  Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. , 2002, International journal of systematic and evolutionary microbiology.

[244]  I. Eroglu,et al.  Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides , 2002 .

[245]  E. Bonch‐Osmolovskaya,et al.  Thermoanaerobacterium aciditolerans sp. nov., a moderate thermoacidophile from a Kamchatka hot spring. , 2007, International journal of systematic and evolutionary microbiology.

[246]  W. Kelly,et al.  Isolation and characterization of a strictly anaerobic, cellulolytic spore former: Clostridium chartatabidum sp. nov. , 1987, Archives of Microbiology.

[247]  Thomas K. Wood,et al.  Metabolic engineering to enhance bacterial hydrogen production , 2007, Microbial biotechnology.

[248]  V. V. Teplyakov,et al.  Lab-scale bioreactor integrated with active membrane system for hydrogen production : experience and prospects , 2002 .

[249]  Sneha Singh,et al.  Fermentative hydrogen production by new marine Clostridium amygdalinum strain C9 isolated from offshore crude oil pipeline , 2010 .

[250]  Delina Lyon,et al.  Caloramator viterbensis sp. nov., a novel thermophilic, glycerol-fermenting bacterium isolated from a hot spring in Italy. , 2002, International journal of systematic and evolutionary microbiology.

[251]  G. R. Zoutberg,et al.  Glucose fermentation byClostridium butyricum grown under a self generated gas atmosphere in chemostat culture , 1985, Applied Microbiology and Biotechnology.

[252]  Rathin Datta,et al.  Modulation of Acetone-Butanol-Ethanol Fermentation by Carbon Monoxide and Organic Acids , 1985, Applied and environmental microbiology.

[253]  R. Nandi,et al.  Synthesis and lysis of formate by immobilized cells of Escherichia coli , 1992, Biotechnology and bioengineering.

[254]  Thomas K. Wood,et al.  Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli , 2007, Applied Microbiology and Biotechnology.

[255]  D. Gilichinsky,et al.  Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov. , 2005, Extremophiles.

[256]  Jo-Shu Chang,et al.  Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. , 2010, Bioresource technology.

[257]  Duu-Jong Lee,et al.  Dark fermentation on biohydrogen production: Pure culture. , 2011, Bioresource technology.

[258]  B. Patel,et al.  L-alanine production from glucose fermentation by hyperthermophilic members of the domains bacteria and Archaea: a remnant of an ancestral metabolism? , 1996, Applied and environmental microbiology.

[259]  Jianlong Wang,et al.  FACTORS INFLUENCING FERMENTATIVE HYDROGEN PRODUCTION: A REVIEW , 2009 .

[260]  T. Saito‐Taki,et al.  Simultaneous production of xylanase and hydrogen using xylan in batch culture of Clostridium sp. strain X53 , 1996 .

[261]  H. Yokoi,et al.  H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes , 1998, Biotechnology Letters.

[262]  N. T. Eriksen,et al.  H2 synthesis from pentoses and biomass in Thermotoga spp. , 2011, Biotechnology Letters.

[263]  Karin Willquist,et al.  Evaluation of the influence of CO2 on hydrogen production by Caldicellulosiruptor saccharolyticus , 2009 .

[264]  A. Bernalier-Donadille,et al.  Interspecies H2 transfer in cellulose degradation between fibrolytic bacteria and H2-utilizing microorganisms from the human colon. , 2001, FEMS microbiology letters.

[265]  J. Zeikus,et al.  Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum , 1988, Journal of bacteriology.

[266]  E. Bonch‐Osmolovskaya,et al.  Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. , 2002, International journal of systematic and evolutionary microbiology.

[267]  Xing Yan,et al.  Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. , 2010, Bioresource technology.

[268]  N. Ren,et al.  Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition , 2008 .

[269]  L. Popoff Ueber die Sumpfgasgährung , 1875, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[270]  Kazuya Watanabe,et al.  An electricity-generating prosthecate bacterium strain Mfc52 isolated from a microbial fuel cell. , 2008, FEMS microbiology letters.

[271]  Patrick C. Hallenbeck,et al.  Biological hydrogen production; fundamentals and limiting processes , 2002 .

[272]  V. Kalia,et al.  Microbial and enzymatic improvement of anaerobic digestion of waste biomass , 2001, Biotechnology Letters.

[273]  Jun Hirose,et al.  H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M[h]19 , 1998, Biotechnology Letters.

[274]  Alfons J. M. Stams,et al.  Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii , 2002 .

[275]  John R. Benemann,et al.  Biological hydrogen production , 1995 .

[276]  A. Stams,et al.  Utilisation of biomass for the supply of energy carriers , 1999, Applied Microbiology and Biotechnology.

[277]  P. Claassen,et al.  Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus , 2007, Applied Microbiology and Biotechnology.

[278]  P. Vos,et al.  Fermentation of mannitol by Clostridium butyricum: role of acetate as an external hydrogen acceptor , 1989, Applied Microbiology and Biotechnology.

[279]  Debabrata Das,et al.  RECENT DEVELOPMENTS IN BIOLOGICAL HYDROGEN PRODUCTION PROCESSES , 2008 .

[280]  Shangtian Yang,et al.  Construction and Characterization of ack Deleted Mutant of Clostridium tyrobutyricum for Enhanced Butyric Acid and Hydrogen Production , 2008, Biotechnology progress.

[281]  Debabrata Das,et al.  Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21 , 2006 .

[282]  H. Drake,et al.  Clostridium uliginosum sp. nov., a novel acid-tolerant, anaerobic bacterium with connecting filaments. , 2001, International journal of systematic and evolutionary microbiology.

[283]  D. W. Penfold,et al.  Production of H2 from sucrose by Escherichia coli strains carrying the pUR400 plasmid, which encodes invertase activity , 2004, Biotechnology Letters.

[284]  Young-Su Yun,et al.  Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation , 2006 .

[285]  P. Vos,et al.  Fermentation of d-xylose by Clostridium butyricum LMG 1213t1 in chemostats , 1991 .

[286]  J. Russell,et al.  Dual Mechanisms of Tricarboxylate Transport and Catabolism by Acidaminococcus fermentans , 1994, Applied and environmental microbiology.

[287]  N. Ren,et al.  Enhanced bio-hydrogen production by the combination of dark- and photo-fermentation in batch culture. , 2010, Bioresource technology.

[288]  B. Schink,et al.  Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. , 1996, International journal of systematic bacteriology.

[289]  A. Stams,et al.  Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. , 2003, Biotechnology and bioengineering.

[290]  J. Schwitzguébel,et al.  Metabolism of lactose by Clostridium thermolacticum growing in continuous culture , 2006, Archives of Microbiology.

[291]  K. K. Meher,et al.  High biohydrogen yielding Clostridium sp. DMHC-10 isolated from sludge of distillery waste treatment plant , 2010 .

[292]  Philippe Soucaille,et al.  Microbial Conversion of Glycerol to 1,3-Propanediol: Physiological Comparison of a Natural Producer, Clostridium butyricum VPI 3266, and an Engineered Strain, Clostridium acetobutylicum DG1(pSPD5) , 2006, Applied and Environmental Microbiology.

[293]  Huijuan Xu,et al.  Isolation and characterization of a high H2-producing strain Klebsiella oxytoca HP1 from a hot spring. , 2005, Research in microbiology.

[294]  M. Talabardon,et al.  Anaerobic thermophilic fermentation for acetic acid production from milk permeate. , 2000, Journal of biotechnology.

[295]  Hydrogen production by the thermophilic bacterium Thermotoga neapolitana , 2002 .

[296]  Richard Sparling,et al.  Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process , 2008 .

[297]  Donald A. Comfort,et al.  Impact of Substrate Glycoside Linkage and Elemental Sulfur on Bioenergetics of and Hydrogen Production by the Hyperthermophilic Archaeon Pyrococcus furiosus , 2007, Applied and Environmental Microbiology.

[298]  Tatsuo Yagishita,et al.  Microbial production of hydrogen and ethanol from glycerol‐containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine , 2007, Biotechnology and bioengineering.

[299]  Hemant J. Purohit,et al.  Microbial diversity and genomics in aid of bioenergy , 2008, Journal of Industrial Microbiology & Biotechnology.

[300]  R. Prins,et al.  Some characteristics ofAnaerovibrio lipolytica, a rumen lipolytic organism , 2007, Antonie van Leeuwenhoek.

[301]  Bruno Fabiano,et al.  Mathematical modelling and optimization of hydrogen continuous production in a fixed bed bioreactor , 2002 .

[302]  Duu-Jong Lee,et al.  Harvesting biohydrogen from cellobiose from sulfide or nitrite-containing wastewaters using Clostridium sp. R1. , 2011, Bioresource technology.

[303]  C. Etchebehere,et al.  Coprothermobacter platensis sp. nov., a new anaerobic proteolytic thermophilic bacterium isolated from an anaerobic mesophilic sludge. , 1998, International journal of systematic bacteriology.

[304]  M. Adams,et al.  Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus , 1993, Journal of bacteriology.

[305]  A. Klibanov,et al.  Enzymatic synthesis of formic acid from H2 and CO2 and production of hydrogen from formic acid , 1982, Biotechnology and bioengineering.

[306]  F. Sargent,et al.  Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. , 2008, FEMS microbiology letters.

[307]  F. Rainey,et al.  Production of hydrogen by Clostridium species in the presence of chlorinated solvents. , 2008, FEMS microbiology letters.

[308]  Shangtian Yang,et al.  Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. , 2004, Journal of biotechnology.

[309]  J. Zeikus,et al.  Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates , 1984, Journal of bacteriology.

[310]  Yutaka Nakashimada,et al.  Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. , 2005, Journal of bioscience and bioengineering.

[311]  Byung Hong Kim,et al.  Control of Carbon and Electron Flow in Clostridium acetobutylicum Fermentations: Utilization of Carbon Monoxide to Inhibit Hydrogen Production and to Enhance Butanol Yields , 1984, Applied and environmental microbiology.

[312]  Thomas K. Wood,et al.  Protein engineering of hydrogenase 3 to enhance hydrogen production , 2008, Applied Microbiology and Biotechnology.

[313]  W. Shieh,et al.  Vibrio aerogenes sp. nov., a facultatively anaerobic marine bacterium that ferments glucose with gas production. , 2000, International journal of systematic and evolutionary microbiology.

[314]  H2 production from chemostat fermentation of glucose byClostridium butyricum andClostridium pasteurianum in ammonium- and phosphate limitation , 1990, Biotechnology Letters.

[315]  Nanqi Ren,et al.  Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108. , 2011, Bioresource technology.

[316]  Christoph Herwig,et al.  Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on H2 and CO2 , 2012 .

[317]  P. Claassen,et al.  Performance and population analysis of a non‐sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer , 2009, Biotechnology and bioengineering.

[318]  N. Mizukami,et al.  Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No.2 , 1995 .

[319]  D. Das,et al.  Improvement of Biohydrogen Production Under Decreased Partial Pressure of H2 by Enterobacter cloacae , 2006, Biotechnology Letters.

[320]  E. Stackebrandt,et al.  Thermicanus aegyptius gen. nov., sp. nov., Isolated from Oxic Soil, a Fermentative Microaerophile That Grows Commensally with the Thermophilic Acetogen Moorella thermoacetica , 1999, Applied and Environmental Microbiology.

[321]  W. H. Jollyman,et al.  XL.—The bacterial decomposition of formic acid into carbon dioxide and hydrogen , 1901 .

[322]  I. Karube,et al.  Biochemical energy conversion using immobilized whole cells of Clostridium butyricum. , 1980, Biochimie.

[323]  E. Zoetendal,et al.  Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. , 2003, International journal of systematic and evolutionary microbiology.

[324]  B. Ahring,et al.  Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. , 1999, International journal of systematic bacteriology.

[325]  Alissara Reungsang,et al.  Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum , 2008 .

[326]  B. Patel,et al.  Haloanaerobium lacusroseus sp. nov., an extremely halophilic fermentative bacterium from the sediments of a hypersaline lake. , 1995, International journal of systematic bacteriology.

[327]  Edward Crabbe,et al.  Influence of Culture Parameters on Biological Hydrogen Production by Clostridium saccharoperbutylacetonicum ATCC 27021 , 2005 .

[328]  C. Woese,et al.  Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov., sp. nov. , 1995, International journal of systematic bacteriology.

[329]  Emmanuel G. Koukios,et al.  Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus , 2010 .

[330]  Peter Rådström,et al.  Stable coexistence of two Caldicellulosiruptor species in a de novo constructed hydrogen-producing co-culture , 2010, Microbial cell factories.

[331]  M. Wolin,et al.  H2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria. , 1975, Applied microbiology.

[332]  B. Ollivier,et al.  Haloincola saccharolytica subsp. senegalensis subsp. nov., Isolated from the Sediments of a Hypersaline Lake, and Emended Description of Haloincola saccharolytica , 1994 .

[333]  A. Stams,et al.  Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. , 2002, International journal of systematic and evolutionary microbiology.

[334]  T. D. Nguyen,et al.  Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition. , 2010, Bioresource technology.

[335]  T. Hoaki,et al.  Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. , 2001, International journal of systematic and evolutionary microbiology.

[336]  D. Lee,et al.  Effect of Initial Glucose Concentrations on Carbon and Energy Balances in Hydrogen-Producing Clostridium tyrobutyricum JM1 , 2009 .

[337]  You-Kwan Oh,et al.  Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19 , 2003 .

[338]  Richard Sparling,et al.  Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405 , 2009, Applied Microbiology and Biotechnology.

[339]  A. Melis,et al.  Green alga hydrogen production: progress, challenges and prospects , 2002 .

[340]  Pan Zhao,et al.  Hydrogen production characteristics from dark fermentation of maltose by an isolated strain F.P 01 , 2010 .

[341]  G. Voordouw Carbon Monoxide Cycling by Desulfovibrio vulgaris Hildenborough , 2002, Journal of bacteriology.

[342]  J. Zeikus,et al.  Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments , 1987, Applied and environmental microbiology.

[343]  Yanhe Ma,et al.  Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China. , 2001, International journal of systematic and evolutionary microbiology.

[344]  Robert M. Kelly,et al.  Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus , 2008, Applied and Environmental Microbiology.

[345]  T. Wood,et al.  Metabolically engineered bacteria for producing hydrogen via fermentation , 2007, Microbial biotechnology.

[346]  I. Ntaikou,et al.  Valorisation of wastepaper using the fibrolytic/hydrogen producing bacterium Ruminococcus albus. , 2009, Bioresource technology.

[347]  H. Hou,et al.  Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2. , 2008, Bioresource technology.

[348]  You-Kwan Oh,et al.  Various hydrogenases and formate-dependent hydrogen production in Citrobacter amalonaticus Y19 , 2008 .

[349]  B. Chang,et al.  Hydrogen Production from Wastewater Sludge Using a Clostridium Strain , 2003, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[350]  J. Zeikus,et al.  Differential amylosaccharide metabolism of Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum , 1985, Journal of bacteriology.

[351]  J. Zeikus,et al.  Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii , 1981, Journal of bacteriology.

[352]  F. Rainey,et al.  Thermobrachium celere gen. nov., sp. nov., a rapidly growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe. , 1996, International journal of systematic bacteriology.

[353]  Bruce E Logan,et al.  Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. , 2006, Water research.

[354]  K. Bagramyan,et al.  Relationship of the Escherichia coli TrkA System of Potassium Ion Uptake with the F0F1-ATPase Under Growth Conditions Without Anaerobic or Aerobic Respiration , 1998, Bioscience reports.

[355]  M. Wolin Metabolic interactions among intestinal microorganisms. , 1974, The American journal of clinical nutrition.

[356]  J. Zeikus,et al.  Clostridium thermosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate , 1983 .

[357]  P. Koskinen,et al.  Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas , 2008, Biotechnology and bioengineering.

[358]  J. Wiegel,et al.  Clostridium thermobutyricum sp. nov., a Moderate Thermophile Isolated from a Cellulolytic Culture, That Produces Butyrate as the Major Product , 1989 .

[359]  R. Thauer,et al.  Energy conservation in chemotrophic anaerobic bacteria , 1977, Bacteriological reviews.

[360]  Jianji Wang,et al.  Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes , 2009 .

[361]  J. Zeikus,et al.  Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium , 1979, Archives of Microbiology.

[362]  V. Vavilin,et al.  Modelling hydrogen partial pressure change as a result of competition between the butyric and propionic groups of acidogenic bacteria , 1995 .

[363]  Karin Willquist,et al.  Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory , 2010, Microbial cell factories.

[364]  Dipankar Ghosh,et al.  Advances in fermentative biohydrogen production: the way forward? , 2009, Trends in biotechnology.

[365]  M. Levandowsky,et al.  Production of hydrogen by microbial fermentation , 1988 .

[366]  A. Hamid,et al.  Effect of some environmental parameters on hydrogen production using C. acetobutylicum. , 2008, Pakistan journal of biological sciences : PJBS.

[367]  H. Yokoi,et al.  Simultaneous production of hydrogen and bioflocculant by Enterobacter sp. BY-29 , 2001 .

[368]  I Karube,et al.  Continous hydrogen production by immobilized whole cells of Clostridium butyricum , 1976 .

[369]  Robert Huber,et al.  Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C , 1986, Archives of Microbiology.

[370]  K. Bagramyan,et al.  Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by Escherichia coli formate hydrogenlyase at acidic pH and in the presence of external formate , 2007, Cell Biochemistry and Biophysics.

[371]  Jo‐Shu Chang,et al.  Dark Hydrogen Fermentation from Hydrolyzed Starch Treated with Recombinant Amylase Originating from Caldimonastaiwanensis On1 , 2007, Biotechnology progress.

[372]  M. Tomiyama,et al.  Construction and characterization of fermentative lactate dehydrogenase Escherichia coli mutant and its potential for bacterial hydrogen production , 1999 .

[373]  Richard Sparling,et al.  Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates , 2006 .

[374]  R. Lamed,et al.  Effects of Stirring and Hydrogen on Fermentation Products of Clostridium thermocellum , 1988, Applied and environmental microbiology.

[375]  M. Wolin,et al.  Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium , 1977, Applied and environmental microbiology.

[376]  Cliff Han,et al.  Complete Genome Sequence of the Haloalkaliphilic, Hydrogen-Producing Bacterium Halanaerobium hydrogeniformans , 2011, Journal of bacteriology.

[377]  Debabrata Das,et al.  Improvement of biohydrogen production by Enterobacter cloacae IIT-BT 08 under regulated pH. , 2011, Journal of biotechnology.

[378]  Ilyobacter insuetus sp. nov., a fermentative bacterium specialized in the degradation of hydroaromatic compounds. , 2002, International journal of systematic and evolutionary microbiology.

[379]  Irini Angelidaki,et al.  Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2 , 2008 .

[380]  Debabrata Das,et al.  Hydrogen production by biological processes: a survey of literature , 2001 .

[381]  J. Schwitzguébel,et al.  Acetate production from lactose by Clostridium thermolacticum and hydrogen-scavenging microorganisms in continuous culture--effect of hydrogen partial pressure. , 2005, Journal of biotechnology.

[382]  Duu-Jong Lee,et al.  Bioaugmented hydrogen production from carboxymethyl cellulose and partially delignified corn stalks using isolated cultures , 2008 .

[383]  P. Hallenbeck,et al.  Fundamentals of the fermentative production of hydrogen. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[384]  M. Matsumoto,et al.  Hydrogen production by fermentation using acetic acid and lactic acid. , 2007, Journal of bioscience and bioengineering.

[385]  Duu-Jong Lee,et al.  Bioaugmented hydrogen production from microcrystalline cellulose using co-culture—Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49 , 2008 .

[386]  D. van der Lelie,et al.  H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions , 2004, Biotechnology Letters.

[387]  Yutaka Nakashimada,et al.  Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states , 2002 .

[388]  M Momirlan,et al.  Recent directions of world hydrogen production , 1999 .