Lanthanum-substituted bismuth titanate for use in non-volatile memories

Non-volatile memory devices are so named because they retain information when power is interrupted; thus they are important computer components. In this context, there has been considerable recent interest in developing non-volatile memories that use ferroelectric thin films—‘ferroelectric random access memories’, or FRAMs—in which information is stored in the polarization state of the ferroelectric material. To realize a practical FRAM, the thin films should satisfy the following criteria: compatibility with existing dynamic random access memory technologies, large remnant polarization (Pr) and reliable polarization-cycling characteristics. Early work focused on lead zirconate titanate (PZT) but, when films of this material were grown on metal electrodes, they generally suffered from a reduction of Pr (‘fatigue’) with polarity switching. Strontium bismuth tantalate (SBT) and related oxides have been proposed to overcome the fatigue problem, but such materials have other shortcomings, such as a high deposition temperature. Here we show that lanthanum-substituted bismuth titanate thin films provide a promising alternative for FRAM applications. The films are fatigue-free on metal electrodes, they can be deposited at temperatures of ∼650 °C and their values of Pr are larger than those of the SBT films.

[1]  G. Dormans,et al.  Chemical Vapor Deposition of Electroceramic Thin Films , 1996 .

[2]  S. E. Cummins,et al.  CRYSTAL SYMMETRY, OPTICAL PROPERTIES, AND FERROELECTRIC POLARIZATION OF Bi4Ti3O12 SINGLE CRYSTALS , 1967 .

[3]  O. Stern,et al.  Beugung von Molekularstrahlen , 1930 .

[4]  Kazushi Amanuma,et al.  Preparation and ferroelectric properties of SrBi2Ta2O9 thin films , 1995 .

[5]  Kolodney,et al.  Unimolecular Rate Constants and Cooling Mechanisms of Superhot C60 Molecules. , 1995, Physical review letters.

[6]  Rubenstein,et al.  Photon scattering from atoms in an atom interferometer: Coherence lost and regained. , 1995, Physical review letters.

[7]  M. C. Scott,et al.  Fatigue-free ferroelectric capacitors with platinum electrodes , 1995, Nature.

[8]  E. Joos,et al.  The emergence of classical properties through interaction with the environment , 1985 .

[9]  LOUIS DE BROGLIE,et al.  Waves and Quanta , 1923, Nature.

[10]  T. Takenaka,et al.  Electrical properties of grain-oriented ferroelectric ceramics in some lanthanum modified layer-structure oxides , 1981 .

[11]  J. Paz,et al.  Course 8: Environment-Induced Decoherence and the Transition from Quantum to Classical , 2000, quant-ph/0010011.

[12]  Gerald Badurek,et al.  Verification of coherent spinor rotation of fermions , 1975 .

[13]  B. Park,et al.  Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12 , 1999 .

[14]  E. Campbell,et al.  Optical emission studies of laser desorbed C60 , 1995 .

[15]  A. Kingon,et al.  PULSED LASER ABLATION SYNTHESIS AND CHARACTERIZATION OF LAYERED PT/SRBI2TA2O9/PT FERROELECTRIC CAPACITORS WITH PRACTICALLY NO POLARIZATION FATIGUE , 1995 .

[16]  Mlynek,et al.  Loss of spatial coherence by a single spontaneous emission. , 1994, Physical review letters.

[17]  C. Davisson,et al.  The Scattering of Electrons by a Single Crystal of Nickel , 1927, Nature.

[18]  R. Colella,et al.  Observation of the Phase Shift of a Neutron Due to Precession in a Magnetic Field , 1975 .

[19]  James F. Scott,et al.  The Physics of Ferroelectric Memories , 1998 .

[20]  J. Toennies,et al.  Nondestructive Mass Selection of Small van der Waals Clusters , 1994, Science.

[21]  A. Kingon,et al.  Influence of platinum interlayers on the electrical properties of RuO2/Pb(Zr0.53Ti0.47)O3/RuO2 capacitor heterostructures , 1995 .

[22]  T. Kijima,et al.  New Low-Temperature Processing of Metalorganic Chemical Vapor Deposition-Bi4Ti3O12 Thin Films Using BiOx Buffer Layer , 1999 .

[23]  Tingkai Li,et al.  Metalorganic chemical vapor deposition of ferroelectric SrBi2Ta2O9 thin films , 1996 .

[24]  J. Scott,et al.  Ferroelectric memories , 1997, Science.

[25]  R. Ramesh,et al.  Laser-Ablation Deposition and Characterization of Ferroelectric Capacitors for Nonvolatile Memories , 1996 .

[26]  Compton,et al.  cw laser ionization of C60 and C70. , 1994, Physical review letters.

[27]  B. Kang,et al.  Different fatigue behaviors of SrBi2Ta2O9 and Bi3TiTaO9 films: Role of perovskite layers , 1999 .

[28]  Hidemi Takasu,et al.  Preparation of Pb(Zr,Ti)O3 thin films on electrodes including IrO2 , 1994 .

[29]  S. B. Krupanidhi,et al.  Switching, fatigue, and retention in ferroelectric Bi4Ti3O12 thin films , 1993 .

[30]  T. Sands,et al.  Oriented ferroelectric La‐Sr‐Co‐O/Pb‐La‐Zr‐Ti‐O/La‐Sr‐Co‐O heterostructures on [001] Pt/SiO2 Si substrates using a bismuth titanate template layer , 1994 .

[31]  Mark L. Schattenburg,et al.  Achromatic interferometric lithography for 100‐nm‐period gratings and grids , 1995 .

[32]  G. C. Hegerfeldt,et al.  Determination of Atom-Surface van der Waals Potentials from Transmission-Grating Diffraction Intensities , 1999 .

[33]  K. Udayakumar,et al.  Electrical properties’ maxima in thin films of the lead zirconate–lead titanate solid solution system , 1995 .