Bifurcation Analysis of a Spatially Extended Laser with Optical Feedback

Vertical cavity surface-emitting lasers (VCSELs) are a new type of semiconductor laser characterized by the spatial extent of their disk-shaped output apertures. As a result, a VCSEL supports several optical modes (patterns of light) transverse to the direction of light propagation. When any laser is coupled to other optical elements, there is unavoidable optical feedback via reflecting surfaces, which influences the stability of the laser output. For a VCSEL, the question is how the transverse optical modes interact dynamically in the presence of optical feedback and how this affects stability of the system. In this paper, we start from a PDE description of the VCSEL. We proceed by using an expansion in suitable eigenfunctions to resolve the spatial dependence. In the presence of optical feedback we obtain a model in the form of a system of delay differential equations (DDEs). As we show with the example of a VCSEL that supports two transverse modes, the spatially expanded DDE model is small enough to al...

[1]  Daniel Erni,et al.  VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model , 2003 .

[2]  Jeff Porter,et al.  Multifrequency control of Faraday wave patterns. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Cristina Masoller,et al.  Synchronization of unidirectionally coupled multi-transverse-mode vertical-cavity surface-emitting lasers , 2004 .

[4]  Alex M. Andrew,et al.  Analysis and Design of Vertical Cavity Surface Emitting Lasers , 2004 .

[5]  H Thienpont,et al.  Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers. , 2003, Optics letters.

[6]  B Krauskopf,et al.  Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Kirk Green,et al.  Bifurcation analysis of a semiconductor laser subject to non-instantaneous phase-conjugate feedback , 2004 .

[8]  Fumio Koyama,et al.  All-Optical Regeneration Using Transverse Mode Switching in Long-Wavelength Vertical-Cavity Surface-Emitting Lasers , 2006 .

[9]  Joanne Y. Law,et al.  Effects of transverse-mode competition on the injection dynamics of vertical-cavity surface-emitting lasers , 1997 .

[10]  Salvador Balle,et al.  Polarization and transverse-mode selection in quantum-well vertical-cavity surface-emitting lasers: index- and gain-guided devices , 1997 .

[11]  Ingo Fischer,et al.  Spatio-temporal emission dynamics of VCSELs: modal competition in the turn-on behavior , 2004, SPIE Photonics Europe.

[12]  D. Wagg,et al.  Modelling real-time dynamic substructuring using partial delay differential equations , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[14]  C. Postlethwaite,et al.  Spatial and temporal feedback control of traveling wave solutions of the two-dimensional complex Ginzburg-Landau equation. , 2006, nlin/0701007.

[15]  B Krauskopf,et al.  Feedback phase sensitivity of a semiconductor laser subject to filtered optical feedback: experiment and theory. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Bernd Krauskopf,et al.  Bifurcation Analysis of Lasers with Delay , 2003 .

[17]  Govind P. Agrawal,et al.  Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers , 1997 .

[18]  D. Lenstra,et al.  Coherence collapse in single-mode semiconductor lasers due to optical feedback , 1985, IEEE Journal of Quantum Electronics.

[19]  Joanne Y. Law,et al.  Feedback-induced chaos and intensity-noise enhancement in vertical-cavity surface-emitting lasers , 1998 .

[20]  Daan Lenstra,et al.  Bifurcation Analysis of a Semiconductor Laser with Filtered Optical Feedback , 2007, SIAM J. Appl. Dyn. Syst..

[21]  K. A. Shore,et al.  Transverse-mode selection in external-cavity vertical-cavity surface-emitting laser diodes , 1996 .

[22]  G. Samaey,et al.  DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations , 2001 .

[23]  D. V. Lang,et al.  Physics and the communications industry , 1999 .

[24]  Hitoshi Kawaguchi,et al.  Bistabilities and Nonlinearities in Laser Diodes , 1994 .

[25]  Bjarne Tromborg,et al.  Stability analysis for a semiconductor laser in an external cavity , 1984 .

[26]  H. Temkin,et al.  Measurement of differential carrier lifetime in vertical-cavity surface-emitting lasers , 1998, IEEE Photonics Technology Letters.

[27]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[28]  Giovanni Samaey,et al.  A Two-Parameter Study of the Locking Region of a Semiconductor Laser Subject to Phase-Conjugate Feedback , 2003, SIAM J. Appl. Dyn. Syst..

[29]  Bernd Krauskopf,et al.  Symmetry properties of lasers subject to optical feedback , 2000 .

[30]  Patrice Mégret,et al.  Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers , 2002 .

[31]  J V Moloney,et al.  Derivation of semiconductor laser mean-field and Swift-Hohenberg equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  G. Stépán Retarded dynamical systems : stability and characteristic functions , 1989 .

[33]  Ingo Fischer,et al.  Emission dynamics of semiconductor lasers subject to delayed optical feedback: An experimentalist’s perspective , 2001 .

[34]  Ingo Fischer,et al.  Picosecond emission dynamics of vertical-cavity surface-emitting lasers: spatial, spectral, and polarization-resolved characterization , 2003 .

[35]  Ingo Fischer,et al.  Polarization selective symmetry breaking in the near-fields of vertical cavity surface emitting lasers , 2000 .

[37]  K. ENGELBORGHS,et al.  On Stability of LMS Methods and Characteristic Roots of Delay Differential Equations , 2002, SIAM J. Numer. Anal..

[38]  Dimitri Breda,et al.  Computing the characteristic roots for delay differential equations , 2004 .

[39]  J. D. Kingsley,et al.  Coherent Light Emission From GaAs Junctions , 1962 .

[40]  J. P. Woerdman,et al.  Effects of transverse anisotropy on VCSEL spectra , 1994 .

[41]  D. Roose,et al.  Continuation and Bifurcation Analysis of Delay Differential Equations , 2007 .

[42]  Angel Valle,et al.  Selection and modulation of high-order transverse modes in vertical-cavity surface-emitting lasers , 1998 .

[43]  Ingo Fischer,et al.  Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. , 2001, Physical review letters.

[44]  St́ephaneBarlandandSalvadorBalle FrancescoMarino Single Mode operation and Transverse Mode control in VCSELs induced by Frequency Selective Feedback , 2003 .

[45]  Franco Prati,et al.  LOGIC GATES AND OPTICAL SWITCHING WITH VERTICAL-CAVITY SURFACE-EMITTING LASERS , 1997 .

[46]  Daan Lenstra,et al.  External cavity mode structure of a two-mode VCSEL subject to optical feedback , 2007 .

[47]  Kenichi Iga,et al.  Single transverse mode condition of surface‐emitting injection lasers , 1988 .

[48]  Hugo Thienpont,et al.  Optical feedback induces polarization mode-hopping in vertical-cavity surface-emitting lasers , 2003, Photonics Fabrication Europe.

[49]  C. Masoller,et al.  Transverse-mode dynamics in directly modulated vertical-cavity surface-emitting lasers with optical feedback , 2004, IEEE Journal of Quantum Electronics.

[50]  Dirk Roose,et al.  Efficient computation of characteristic roots of delay differential equations using LMS methods , 2008 .

[51]  C. Caneau,et al.  All-optical inverter based on long-wavelength vertical-cavity surface-emitting laser , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[52]  K. Alan Shore,et al.  Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers , 2005 .

[53]  J García-Ojalvo,et al.  Spatiotemporal communication with synchronized optical chaos. , 2000, Physical review letters.

[54]  Daan Lenstra,et al.  Fundamental issues of nonlinear laser dynamics. , 2000 .

[55]  Cristina Masoller,et al.  Transverse-mode dynamics in vertical-cavity surface-emitting lasers with optical feedback , 2002 .

[56]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[57]  D Roose,et al.  Stability and rupture of bifurcation bridges in semiconductor lasers subject to optical feedback. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.