Population structure and evolutionary progress.

Wright's shifting-balance theory is discussed as an example of a process that can cause species to evolve combinations of characters that could not evolve under natural selection alone. A review of the existing theory of peak shifts indicates that the conditions of extreme isolation that are necessary to permit genetic drift to alter the outcome of natural selection in local populations would make gene flow too weak to spread a new combination of genes to other populations in a reasonable time. Instead, it seems likely that major demographic changes must occur in a species for the shifting-balance process to work. A discussion of direct and indirect studies of gene flow in natural populations suggests that the current genetic structure of many species is likely to reflect past demographic events rather than ongoing gene flow. It is possible then that demographic processes could be responsible for spreading new traits in a species, but that would be true whether those new traits evolved only owing to natural selection or owing in addition to genetic drift and other forces.