Delta-Confluent Drawings

We generalize the tree-confluent graphs to a broader class of graphs called Δ-confluent graphs. This class of graphs and distance-hereditary graphs, a well-known class of graphs, coincide. Some results about the visualization of Δ-confluent graphs are also given.

[1]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[2]  Joseph S. B. Mitchell,et al.  On Simultaneous Planar Graph Embeddings , 2003, WADS.

[3]  David Eppstein,et al.  Journal of Graph Algorithms and Applications Confluent Drawings: Visualizing Non-planar Diagrams in a Planar Way , 2022 .

[4]  Giuseppe Di Battista,et al.  A Note on Optimal Area Algorithms for Upward Drawings of Binary Trees , 1992, Comput. Geom..

[5]  Joseph S. B. Mitchell,et al.  On Simultaneous Graph Embedding , 2002, ArXiv.

[6]  Edward M. Reingold,et al.  The complexity of drawing trees nicely , 2004, Acta Informatica.

[7]  Roberto Tamassia,et al.  A Graph Drawing and Translation Service on the WWW , 1996, GD.

[8]  Charles E. Leiserson,et al.  Area-efficient graph layouts , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[9]  David Eppstein,et al.  The geometric thickness of low degree graphs , 2003, SCG '04.

[10]  David Eppstein,et al.  Confluent Layered Drawings , 2006, Algorithmica.

[11]  Therese C. Biedl,et al.  Hexagonal Grid Drawings: Algorithms and Lower Bounds , 2004, Graph Drawing.

[12]  Michael T. Goodrich,et al.  Area-efficient upward tree drawings , 1993, SCG '93.

[13]  Stephen G. Kobourov,et al.  Simultaneous Embedding of a Planar Graph and Its Dual on the Grid , 2005, Theory of Computing Systems.

[14]  Michel Habib,et al.  A simple paradigm for graph recognition: application to cographs and distance hereditary graphs , 2001, Theor. Comput. Sci..

[15]  Goos Kant Hexagonal Grid Drawings , 1992, WG.

[16]  Timothy M. Chan,et al.  Optimizing area and aspect ration in straight-line orthogonal tree drawings , 1996, Comput. Geom..

[17]  Angelo Gregori,et al.  Unit-Length Embedding of Binary Trees on a Square Grid , 1989, Inf. Process. Lett..

[18]  H. T. Kung,et al.  On the Area of Binary Tree Layouts , 1980, Inf. Process. Lett..

[19]  Leslie G. Valiant,et al.  Universality considerations in VLSI circuits , 1981, IEEE Transactions on Computers.

[20]  John Q. Walker,et al.  A node‐positioning algorithm for general trees , 1990, Softw. Pract. Exp..

[21]  Edward M. Reingold,et al.  Tidier Drawings of Trees , 1981, IEEE Transactions on Software Engineering.

[22]  Charles Wetherell,et al.  Tidy Drawings of Trees , 1979, IEEE Transactions on Software Engineering.

[23]  Sumi Choi Orthogonal Straight Line Drawing of Trees , 1999 .

[24]  Michael J. Pelsmajer,et al.  Train Tracks and Confluent Drawings , 2006, Algorithmica.

[25]  Antonios Symvonis,et al.  Parallel h-v Drawings of Binary Trees , 1994, ISAAC.

[26]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory B.

[27]  Peter L. Hammer,et al.  Completely separable graphs , 1990, Discret. Appl. Math..

[28]  Charles E. Leiserson,et al.  Area-Efficient Graph Layouts (for VLSI) , 1980, FOCS.

[29]  Tao Lin,et al.  Two Tree Drawing Conventions , 1993, Int. J. Comput. Geom. Appl..