Minimization of Antenna Quality Factor

Optimal currents on arbitrarily shaped radiators with respect to the minimum quality factor are found using a simple and efficient procedure. The solution starts with a reformulation of the problem of minimizing quality factor <inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> as an alternative, so-called dual, problem. Taking advantage of modal decomposition and group theory, it is shown that the dual problem can easily be solved and always results in minimal quality factor <inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula>. Moreover, the optimization procedure is generalized to minimize quality factor <inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> for embedded antennas, with respect to the arbitrarily weighted radiation patterns, or with prescribed magnitude of the electric and magnetic near fields. The obtained numerical results are compatible with previous results based on the composition of modal currents, convex optimization, and quasi-static approximations; however, using the methodology in this paper, the class of solvable problems is significantly extended.

[1]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[2]  H. Thal New Radiation$Q$Limits for Spherical Wire Antennas , 2006, IEEE Transactions on Antennas and Propagation.

[3]  Mats Gustafsson Efficiency and Q for small antennas using Pareto optimality , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[4]  Jennifer T. Bernhard,et al.  Eigenvalue Crossing Avoidance in Characteristic Modes , 2016, IEEE Transactions on Antennas and Propagation.

[5]  Jonas Friden,et al.  Antenna Current Optimization for Lossy Media With Near-Field Constraints , 2015, IEEE Antennas and Wireless Propagation Letters.

[6]  Lukas Jelinek,et al.  On the Functional Relation Between Quality Factor and Fractional Bandwidth , 2014, IEEE Transactions on Antennas and Propagation.

[7]  L. J. Chu Physical Limitations of Omni‐Directional Antennas , 1948 .

[8]  Mats Gustafsson,et al.  Antenna Q and Stored Energy Expressed in the Fields, Currents, and Input Impedance , 2015, IEEE Transactions on Antennas and Propagation.

[9]  Mats Gustafsson,et al.  Physical bounds of antennas , 2015 .

[10]  J. T. Bernhard,et al.  A Group Theory Rule for Predicting Eigenvalue Crossings in Characteristic Mode Analyses , 2017, IEEE Antennas and Wireless Propagation Letters.

[11]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[12]  R. Hansen Electrically Small, Superdirective, and Superconducting Antennas: Hansen/Electrically Small, Superdirective, and Superconducting Antennas , 2006 .

[13]  S. Best,et al.  Impedance, bandwidth, and Q of antennas , 2005 .

[14]  Gerhard Kristensson,et al.  Scattering of Electromagnetic Waves by Obstacles , 2016 .

[15]  J. Swinburne Electromagnetic Theory , 1894, Nature.

[16]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[17]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[18]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[19]  Eugene P. Wigner,et al.  ON THE BEHAVIOUR OF EIGENVALUES IN ADIABATIC PROCESSES , 2000 .

[20]  G. Vandenbosch,et al.  Reactive Energies, Impedance, and ${\rm Q}$ Factor of Radiating Structures , 2010, IEEE Transactions on Antennas and Propagation.

[21]  S. Nordebo,et al.  Optimal Antenna Currents for Q, Superdirectivity, and Radiation Patterns Using Convex Optimization , 2013, IEEE Transactions on Antennas and Propagation.

[22]  A.D. Yaghjian,et al.  Impedance, bandwidth, and Q of antennas , 2003, IEEE Transactions on Antennas and Propagation.

[23]  M. Gustafsson,et al.  Physical Bounds for Antennas Above a Ground Plane , 2016, IEEE Antennas and Wireless Propagation Letters.

[24]  Mats Gustafsson,et al.  Antenna Bandwidth Optimization With Single Frequency Simulation , 2014, IEEE Transactions on Antennas and Propagation.

[25]  John L. Volakis,et al.  Computation of the Q limits for arbitrary-shaped antennas using characteristic modes , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[26]  Lukas Jelinek,et al.  Optimal Composition of Modal Currents for Minimal Quality Factor $Q$ , 2016, IEEE Transactions on Antennas and Propagation.

[27]  J. Knorr Consequences of symmetry in the computation of characteristic modes for conducting bodies , 1973 .

[28]  Mats Gustafsson,et al.  Stored Electromagnetic Energy and Antenna Q , 2012, 1211.5521.

[29]  John L. Volakis,et al.  Computation of the $Q$ Limits for Arbitrary-Shaped Antennas Using Characteristic Modes , 2016, IEEE Transactions on Antennas and Propagation.

[30]  Mats Gustafsson,et al.  Stored energies in electric and magnetic current densities for small antennas , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  Mats Gustafsson,et al.  Antenna Current Optimization using MATLAB and CVX , 2016 .

[32]  Oleksiy S. Kim Lower Bounds on Q for Finite Size Antennas of Arbitrary Shape , 2016, IEEE Transactions on Antennas and Propagation.

[33]  Weng Cho Chew,et al.  Integral Equation Methods for Electromagnetic and Elastic Waves , 2007, Synthesis Lectures on Computational Electromagnetics.

[34]  Chi-Chih Chen,et al.  Small Antennas:Miniaturization Techniques & Applications , 2009 .

[35]  B. L. G. Jonsson,et al.  Physical Bounds and Optimal Currents on Antennas , 2012, IEEE Transactions on Antennas and Propagation.

[36]  Lukas Jelinek,et al.  Optimal Currents on Arbitrarily Shaped Surfaces , 2016, IEEE Transactions on Antennas and Propagation.

[37]  W. Marsden I and J , 2012 .

[38]  Mats Gustafsson,et al.  Minimum Q for Lossy and Lossless Electrically Small Dipole Antennas , 2013 .