SCExAO/CHARIS Near-infrared Integral Field Spectroscopy of the HD 15115 Debris Disk

We present new, near-infrared (1.1−2.4 μm) high-contrast imaging of the debris disk around HD 15115 with the Subaru Coronagraphic Extreme Adaptive Optics system (SCExAO) coupled with the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS). SCExAO/CHARIS resolves the disk down to ρ∼0."2 (r_(proj)∼10 au), a factor of ∼3−5 smaller than previous recent studies. We derive a disk position angle of PA ∼279.∘4−280.∘5 and an inclination of i ∼85.∘3−86.∘2. While recent SPHERE/IRDIS imagery of the system could suggest a significantly misaligned two ring disk geometry, CHARIS imagery does not reveal conclusive evidence for this hypothesis. Moreover, optimizing models of both one and two ring geometries using differential evolution, we find that a single ring having a Hong-like scattering phase function matches the data equally well within the CHARIS field of view (ρ≲1"). The disk's asymmetry, well-evidenced at larger separations, is also recovered; the west side of the disk appears on average around 0.4 magnitudes brighter across the CHARIS bandpass between 0."25 and 1". Comparing STIS/50CCD optical photometry (2000−10500 A) with CHARIS NIR photometry, we find a red (STIS/50CCD−CHARIS broadband) color for both sides of the disk throughout the 0."4−1" region of overlap, in contrast to the blue color reported at similar wavelengths for regions exterior to ∼2". Further, this color may suggest a smaller minimum grain size than previously estimated at larger separations. Finally, we provide constraints on planetary companions, and discuss possible mechanisms for the observed inner disk flux asymmetry and color.

[1]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[2]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[3]  GROUND-BASED NEAR-INFRARED IMAGING OF THE HD 141569 CIRCUMSTELLAR DISK , 2002, astro-ph/0211648.

[4]  Mark Clampin,et al.  A planetary system as the origin of structure in Fomalhaut's dust belt , 2005, Nature.

[5]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[6]  D. Apai,et al.  Nearby Debris Disk Systems with High Fractional Luminosity Reconsidered , 2006, astro-ph/0603729.

[7]  M. McElwain,et al.  Characterization of Dusty Debris Disks: The IRAS and Hipparcos Catalogs , 2006, astro-ph/0609555.

[8]  James R. Graham,et al.  Discovery of Extreme Asymmetry in the Debris Disk Surrounding HD 15115 , 2007, 0704.0645.

[9]  I. Song,et al.  Color Gradients Detected in the HD 15115 Circumstellar Disk , 2008, 0807.3328.

[10]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[11]  NasaGsfc,et al.  How Very Massive Metal-Free Stars Start Cosmological Reionization , 2007, 0710.4328.

[12]  S. Kenyon,et al.  Variations on Debris Disks: Icy Planet Formation at 30-150 AU for 1-3 M☉ Main-Sequence Stars , 2008, 0807.1134.

[13]  M. Kuchner,et al.  INTERSTELLAR MEDIUM SCULPTING OF THE HD 32297 DEBRIS DISK , 2009, 0908.4368.

[14]  J. Hahn DIAGNOSING CIRCUMSTELLAR DEBRIS DISKS , 2010, 1006.4311.

[15]  D. Bayliss,et al.  STRUCTURE AND EVOLUTION OF DEBRIS DISKS AROUND F-TYPE STARS. I. OBSERVATIONS, DATABASE, AND BASIC EVOLUTIONARY ASPECTS , 2010, 1012.3631.

[16]  Tae-Soo Pyo,et al.  A COMBINED SUBARU/VLT/MMT 1–5 μm STUDY OF PLANETS ORBITING HR 8799: IMPLICATIONS FOR ATMOSPHERIC PROPERTIES, MASSES, AND FORMATION , 2011, 1101.1973.

[17]  Armando Riccardi,et al.  THE GRAY NEEDLE: LARGE GRAINS IN THE HD 15115 DEBRIS DISK FROM LBT/PISCES/Ks AND LBTI/LMIRcam/L′ ADAPTIVE OPTICS IMAGING , 2012, 1203.2619.

[18]  S. Ertel,et al.  Planet signatures in collisionally active debris discs: scattered light images , 2012, 1209.3969.

[19]  Adam Burrows,et al.  SPECTRAL AND PHOTOMETRIC DIAGNOSTICS OF GIANT PLANET FORMATION SCENARIOS , 2011, 1108.5172.

[20]  Adam Burrows,et al.  DIRECT IMAGING CONFIRMATION AND CHARACTERIZATION OF A DUST-ENSHROUDED CANDIDATE EXOPLANET ORBITING FOMALHAUT , 2012, 1210.6620.

[21]  R. Soummer,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.

[22]  Subaru Telescope,et al.  IMAGING DISCOVERY OF THE DEBRIS DISK AROUND HIP 79977 , 2013, 1301.0625.

[23]  Bertrand Mennesson,et al.  FUNDAMENTAL LIMITATIONS OF HIGH CONTRAST IMAGING SET BY SMALL SAMPLE STATISTICS , 2014, 1407.2247.

[24]  Dario Izzo,et al.  Evolutionary Constrained Optimization for a Jupiter Capture , 2014, PPSN.

[25]  R. Galicher,et al.  Is the HD 15115 inner disk really asymmetrical , 2014, 1409.0710.

[26]  Near-Infrared Image of the Debris Disk around HD 15115 , 2014, 1412.4145.

[27]  J. Wisniewski,et al.  PROBING FOR EXOPLANETS HIDING IN DUSTY DEBRIS DISKS: DISK IMAGING, CHARACTERIZATION, AND EXPLORATION WITH HST/STIS MULTI-ROLL CORONAGRAPHY , 2014, 1406.7303.

[28]  Jason J. Wang,et al.  Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager , 2015, Science.

[29]  John H. Debes,et al.  DIRECT IMAGING AND SPECTROSCOPY OF A YOUNG EXTRASOLAR KUIPER BELT IN THE NEAREST OB ASSOCIATION , 2015, 1505.06734.

[30]  U. Exeter,et al.  A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood , 2015, 1508.05955.

[31]  Dmitry Savransky,et al.  POLARIMETRY WITH THE GEMINI PLANET IMAGER: METHODS, PERFORMANCE AT FIRST LIGHT, AND THE CIRCUMSTELLAR RING AROUND HR 4796A , 2014, 1407.2495.

[32]  A. Burrows,et al.  RESOLVING THE HD 100546 PROTOPLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER: EVIDENCE FOR MULTIPLE FORMING, ACCRETING PLANETS , 2015, 1511.02526.

[33]  G. Perrin,et al.  The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales , 2015, 1507.00017.

[34]  Laurent Pueyo,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS USING PROJECTIONS ON KARHUNEN–LOEVE EIGENIMAGES: FORWARD MODELING , 2016, 1604.06097.

[35]  Jason J. Wang,et al.  THE PECULIAR DEBRIS DISK OF HD 111520 AS RESOLVED BY THE GEMINI PLANET IMAGER , 2016, 1605.02771.

[36]  Craig Loomis,et al.  Laboratory testing and performance verification of the CHARIS integral field spectrograph , 2016, Astronomical Telescopes + Instrumentation.

[37]  Craig Loomis,et al.  Data reduction pipeline for the CHARIS integral-field spectrograph I: detector readout calibration and data cube extraction , 2017, 1706.03067.

[38]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[39]  Frantz Martinache,et al.  SCExAO/CHARIS Near-infrared Direct Imaging, Spectroscopy, and Forward-Modeling of κ And b: A Likely Young, Low-gravity Superjovian Companion , 2018, The Astronomical Journal.

[40]  Timothy D. Brandt,et al.  SCExAO/CHARIS Near-IR High-contrast Imaging and Integral Field Spectroscopy of the HIP 79977 Debris Disk , 2018, The Astronomical Journal.

[41]  B. Matthews,et al.  Debris Disks: Structure, Composition, and Variability , 2018, Annual Review of Astronomy and Astrophysics.

[42]  A. Robin,et al.  BANYAN. XI. The BANYAN Σ Multivariate Bayesian Algorithm to Identify Members of Young Associations with 150 pc , 2018, 1801.09051.

[43]  Candidate List of Edge-on Galaxies with Substantial Extraplanar Dust , 2018, The Astrophysical Journal Supplement Series.

[44]  Frantz Martinache,et al.  SCExAO, an instrument with a dual purpose: perform cutting-edge science and develop new technologies , 2018, Astronomical Telescopes + Instrumentation.

[45]  E. Zubko,et al.  The Effect of Dust Composition and Shape on Radiation-pressure Forces and Blowout Sizes of Particles in Debris Disks , 2019, The Astronomical Journal.

[46]  A. Boccaletti,et al.  Spatially resolved spectroscopy of the debris disk HD 32297 , 2019, Astronomy & Astrophysics.

[47]  E. Nesvold,et al.  Multiple Rings of Millimeter Dust Emission in the HD 15115 Debris Disk , 2019, The Astrophysical Journal.

[48]  D. Mawet,et al.  Investigating the presence of two belts in the HD 15115 system , 2018, Astronomy & Astrophysics.

[49]  A. Boccaletti,et al.  Two cold belts in the debris disk around the G-type star NZ Lupi , 2019, Astronomy & Astrophysics.

[50]  J. Wisniewski,et al.  Identification of Stellar Flares Using Differential Evolution Template Optimization , 2019, The Astronomical Journal.

[51]  Frantz Martinache,et al.  No Clear, Direct Evidence for Multiple Protoplanets Orbiting LkCa 15: LkCa 15 bcd are Likely Inner Disk Signals , 2019, The Astrophysical Journal.

[52]  Frantz Martinache,et al.  Performance and early science with the Subaru Coronagraphic Extreme Adaptive Optics project , 2019, Optical Engineering + Applications.

[53]  Julien H. Girard,et al.  SPHERE: the exoplanet imager for the Very Large Telescope , 2019, Astronomy & Astrophysics.

[54]  Jason J. Wang,et al.  The Gemini Planet Imager View of the HD 32297 Debris Disk , 2020, The Astronomical Journal.

[55]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.