SCExAO/CHARIS Near-infrared Integral Field Spectroscopy of the HD 15115 Debris Disk
暂无分享,去创建一个
Timothy D. Brandt | J. Wisniewski | M. Tamura | K. Hodapp | O. Guyon | F. Martinache | N. Kasdin | T. Groff | M. McElwain | T. Henning | J. Augereau | G. Knapp | N. Jovanovic | J. Chilcote | T. Currie | J. Lozi | N. Skaf | G. Schneider | J. Kwon | M. Sitko | T. Uyama | E. Akiyama | R. Asensio-Torres | K. Wagner | S. Mayama | Kellen D. Lawson
[1] L. C. Henyey,et al. Diffuse radiation in the Galaxy , 1940 .
[2] Rainer Storn,et al. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..
[3] GROUND-BASED NEAR-INFRARED IMAGING OF THE HD 141569 CIRCUMSTELLAR DISK , 2002, astro-ph/0211648.
[4] Mark Clampin,et al. A planetary system as the origin of structure in Fomalhaut's dust belt , 2005, Nature.
[5] B. Macintosh,et al. Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.
[6] D. Apai,et al. Nearby Debris Disk Systems with High Fractional Luminosity Reconsidered , 2006, astro-ph/0603729.
[7] M. McElwain,et al. Characterization of Dusty Debris Disks: The IRAS and Hipparcos Catalogs , 2006, astro-ph/0609555.
[8] James R. Graham,et al. Discovery of Extreme Asymmetry in the Debris Disk Surrounding HD 15115 , 2007, 0704.0645.
[9] I. Song,et al. Color Gradients Detected in the HD 15115 Circumstellar Disk , 2008, 0807.3328.
[10] M. Wyatt,et al. Evolution of Debris Disks , 2008 .
[11] NasaGsfc,et al. How Very Massive Metal-Free Stars Start Cosmological Reionization , 2007, 0710.4328.
[12] S. Kenyon,et al. Variations on Debris Disks: Icy Planet Formation at 30-150 AU for 1-3 M☉ Main-Sequence Stars , 2008, 0807.1134.
[13] M. Kuchner,et al. INTERSTELLAR MEDIUM SCULPTING OF THE HD 32297 DEBRIS DISK , 2009, 0908.4368.
[14] J. Hahn. DIAGNOSING CIRCUMSTELLAR DEBRIS DISKS , 2010, 1006.4311.
[15] D. Bayliss,et al. STRUCTURE AND EVOLUTION OF DEBRIS DISKS AROUND F-TYPE STARS. I. OBSERVATIONS, DATABASE, AND BASIC EVOLUTIONARY ASPECTS , 2010, 1012.3631.
[16] Tae-Soo Pyo,et al. A COMBINED SUBARU/VLT/MMT 1–5 μm STUDY OF PLANETS ORBITING HR 8799: IMPLICATIONS FOR ATMOSPHERIC PROPERTIES, MASSES, AND FORMATION , 2011, 1101.1973.
[17] Armando Riccardi,et al. THE GRAY NEEDLE: LARGE GRAINS IN THE HD 15115 DEBRIS DISK FROM LBT/PISCES/Ks AND LBTI/LMIRcam/L′ ADAPTIVE OPTICS IMAGING , 2012, 1203.2619.
[18] S. Ertel,et al. Planet signatures in collisionally active debris discs: scattered light images , 2012, 1209.3969.
[19] Adam Burrows,et al. SPECTRAL AND PHOTOMETRIC DIAGNOSTICS OF GIANT PLANET FORMATION SCENARIOS , 2011, 1108.5172.
[20] Adam Burrows,et al. DIRECT IMAGING CONFIRMATION AND CHARACTERIZATION OF A DUST-ENSHROUDED CANDIDATE EXOPLANET ORBITING FOMALHAUT , 2012, 1210.6620.
[21] R. Soummer,et al. DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.
[22] Subaru Telescope,et al. IMAGING DISCOVERY OF THE DEBRIS DISK AROUND HIP 79977 , 2013, 1301.0625.
[23] Bertrand Mennesson,et al. FUNDAMENTAL LIMITATIONS OF HIGH CONTRAST IMAGING SET BY SMALL SAMPLE STATISTICS , 2014, 1407.2247.
[24] Dario Izzo,et al. Evolutionary Constrained Optimization for a Jupiter Capture , 2014, PPSN.
[25] R. Galicher,et al. Is the HD 15115 inner disk really asymmetrical , 2014, 1409.0710.
[26] Near-Infrared Image of the Debris Disk around HD 15115 , 2014, 1412.4145.
[27] J. Wisniewski,et al. PROBING FOR EXOPLANETS HIDING IN DUSTY DEBRIS DISKS: DISK IMAGING, CHARACTERIZATION, AND EXPLORATION WITH HST/STIS MULTI-ROLL CORONAGRAPHY , 2014, 1406.7303.
[28] Jason J. Wang,et al. Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager , 2015, Science.
[29] John H. Debes,et al. DIRECT IMAGING AND SPECTROSCOPY OF A YOUNG EXTRASOLAR KUIPER BELT IN THE NEAREST OB ASSOCIATION , 2015, 1505.06734.
[30] U. Exeter,et al. A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood , 2015, 1508.05955.
[31] Dmitry Savransky,et al. POLARIMETRY WITH THE GEMINI PLANET IMAGER: METHODS, PERFORMANCE AT FIRST LIGHT, AND THE CIRCUMSTELLAR RING AROUND HR 4796A , 2014, 1407.2495.
[32] A. Burrows,et al. RESOLVING THE HD 100546 PROTOPLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER: EVIDENCE FOR MULTIPLE FORMING, ACCRETING PLANETS , 2015, 1511.02526.
[33] G. Perrin,et al. The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales , 2015, 1507.00017.
[34] Laurent Pueyo,et al. DETECTION AND CHARACTERIZATION OF EXOPLANETS USING PROJECTIONS ON KARHUNEN–LOEVE EIGENIMAGES: FORWARD MODELING , 2016, 1604.06097.
[35] Jason J. Wang,et al. THE PECULIAR DEBRIS DISK OF HD 111520 AS RESOLVED BY THE GEMINI PLANET IMAGER , 2016, 1605.02771.
[36] Craig Loomis,et al. Laboratory testing and performance verification of the CHARIS integral field spectrograph , 2016, Astronomical Telescopes + Instrumentation.
[37] Craig Loomis,et al. Data reduction pipeline for the CHARIS integral-field spectrograph I: detector readout calibration and data cube extraction , 2017, 1706.03067.
[38] T. A. Lister,et al. Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.
[39] Frantz Martinache,et al. SCExAO/CHARIS Near-infrared Direct Imaging, Spectroscopy, and Forward-Modeling of κ And b: A Likely Young, Low-gravity Superjovian Companion , 2018, The Astronomical Journal.
[40] Timothy D. Brandt,et al. SCExAO/CHARIS Near-IR High-contrast Imaging and Integral Field Spectroscopy of the HIP 79977 Debris Disk , 2018, The Astronomical Journal.
[41] B. Matthews,et al. Debris Disks: Structure, Composition, and Variability , 2018, Annual Review of Astronomy and Astrophysics.
[42] A. Robin,et al. BANYAN. XI. The BANYAN Σ Multivariate Bayesian Algorithm to Identify Members of Young Associations with 150 pc , 2018, 1801.09051.
[43] Candidate List of Edge-on Galaxies with Substantial Extraplanar Dust , 2018, The Astrophysical Journal Supplement Series.
[44] Frantz Martinache,et al. SCExAO, an instrument with a dual purpose: perform cutting-edge science and develop new technologies , 2018, Astronomical Telescopes + Instrumentation.
[45] E. Zubko,et al. The Effect of Dust Composition and Shape on Radiation-pressure Forces and Blowout Sizes of Particles in Debris Disks , 2019, The Astronomical Journal.
[46] A. Boccaletti,et al. Spatially resolved spectroscopy of the debris disk HD 32297 , 2019, Astronomy & Astrophysics.
[47] E. Nesvold,et al. Multiple Rings of Millimeter Dust Emission in the HD 15115 Debris Disk , 2019, The Astrophysical Journal.
[48] D. Mawet,et al. Investigating the presence of two belts in the HD 15115 system , 2018, Astronomy & Astrophysics.
[49] A. Boccaletti,et al. Two cold belts in the debris disk around the G-type star NZ Lupi , 2019, Astronomy & Astrophysics.
[50] J. Wisniewski,et al. Identification of Stellar Flares Using Differential Evolution Template Optimization , 2019, The Astronomical Journal.
[51] Frantz Martinache,et al. No Clear, Direct Evidence for Multiple Protoplanets Orbiting LkCa 15: LkCa 15 bcd are Likely Inner Disk Signals , 2019, The Astrophysical Journal.
[52] Frantz Martinache,et al. Performance and early science with the Subaru Coronagraphic Extreme Adaptive Optics project , 2019, Optical Engineering + Applications.
[53] Julien H. Girard,et al. SPHERE: the exoplanet imager for the Very Large Telescope , 2019, Astronomy & Astrophysics.
[54] Jason J. Wang,et al. The Gemini Planet Imager View of the HD 32297 Debris Disk , 2020, The Astronomical Journal.
[55] Joel Nothman,et al. SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.