Quantum option pricing using Wick rotated imaginary time evolution
暂无分享,去创建一个
[1] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[2] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[3] Enrique Solano,et al. Towards Pricing Financial Derivatives with an IBM Quantum Computer. , 2019, 1904.05803.
[4] M. Benedetti,et al. Quantum circuit structure learning , 2019, 1905.09692.
[5] Eric G. Brown,et al. Quantum Amplitude Estimation in the Presence of Noise , 2020, 2006.14145.
[6] Paul H. Malatesta. インタビュー "Journal of Financial and Quantitative Analysis" 編集長Paul Malatesta教授 , 2005 .
[7] F. Wilczek,et al. Geometric Phases in Physics , 1989 .
[8] T. Hahn,et al. Option Pricing Using Artificial Neural Networks : an Australian Perspective , 2013 .
[9] Dirk Oliver Theis,et al. Calculus on parameterized quantum circuits. , 2018, 1812.06323.
[10] Marcello Benedetti,et al. Hardware-efficient variational quantum algorithms for time evolution , 2020, Physical Review Research.
[11] Peter L. McMahon,et al. A Jacobi Diagonalization and Anderson Acceleration Algorithm For Variational Quantum Algorithm Parameter Optimization. , 2019, 1904.03206.
[12] IEEE Transactions on Computers , Computing in Science & Engineering.
[13] Tsuyoshi Murata,et al. {m , 1934, ACML.
[14] Kazuyoshi Yoshino,et al. Quantum pricing with a smile: implementation of local volatility model on quantum computer , 2020, EPJ Quantum Technology.
[15] Seth Lloyd,et al. Quantum computational finance: quantum algorithm for portfolio optimization , 2018, 1811.03975.
[16] A. Wightman,et al. Mathematical Physics. , 1930, Nature.