Quantum option pricing using Wick rotated imaginary time evolution

In this paper we reformulate the problem of pricing options in a quantum setting. Our proposed algorithm involves preparing an initial state, representing the option price, and then evolving it using existing imaginary time simulation algorithms. This way of pricing options boils down to mapping an initial option price to a quantum state and then simulating the time dependence in Wick's imaginary time space. We numerically verify our algorithm for European options using a particular imaginary time evolution algorithm as proof of concept and show how it can be extended to path dependent options like Asian options. As the proposed method uses a hybrid variational algorithm, it is bound to be relevant for near-term quantum computers.

[1]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[2]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[3]  Enrique Solano,et al.  Towards Pricing Financial Derivatives with an IBM Quantum Computer. , 2019, 1904.05803.

[4]  M. Benedetti,et al.  Quantum circuit structure learning , 2019, 1905.09692.

[5]  Eric G. Brown,et al.  Quantum Amplitude Estimation in the Presence of Noise , 2020, 2006.14145.

[6]  Paul H. Malatesta インタビュー "Journal of Financial and Quantitative Analysis" 編集長Paul Malatesta教授 , 2005 .

[7]  F. Wilczek,et al.  Geometric Phases in Physics , 1989 .

[8]  T. Hahn,et al.  Option Pricing Using Artificial Neural Networks : an Australian Perspective , 2013 .

[9]  Dirk Oliver Theis,et al.  Calculus on parameterized quantum circuits. , 2018, 1812.06323.

[10]  Marcello Benedetti,et al.  Hardware-efficient variational quantum algorithms for time evolution , 2020, Physical Review Research.

[11]  Peter L. McMahon,et al.  A Jacobi Diagonalization and Anderson Acceleration Algorithm For Variational Quantum Algorithm Parameter Optimization. , 2019, 1904.03206.

[12]  IEEE Transactions on Computers , Computing in Science & Engineering.

[13]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[14]  Kazuyoshi Yoshino,et al.  Quantum pricing with a smile: implementation of local volatility model on quantum computer , 2020, EPJ Quantum Technology.

[15]  Seth Lloyd,et al.  Quantum computational finance: quantum algorithm for portfolio optimization , 2018, 1811.03975.

[16]  A. Wightman,et al.  Mathematical Physics. , 1930, Nature.