Surveying the epigenomic landscape, one base at a time

Epigenomics, the determination of epigenetic landscapes on a genome-wide scale, has progressed at an astounding rate over the past decade. Recent technological developments have enabled base-pair resolution of various epigenomic features, leading to new insights into epigenetic regulation.

[1]  Patrick O. Brown,et al.  Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[2]  E. Birney,et al.  High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. , 2011, Genome research.

[3]  S. Henikoff,et al.  Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. , 2012, Genome research.

[4]  G. Crabtree,et al.  ATP-dependent chromatin remodeling: genetics, genomics and mechanisms , 2011, Cell Research.

[5]  R. Reeves,et al.  Genomic transcriptional activity and the structure of chromatin , 1976, Nature.

[6]  S. Henikoff,et al.  Genome-Wide Kinetics of Nucleosome Turnover Determined by Metabolic Labeling of Histones , 2010, Science.

[7]  M. Noll Subunit structure of chromatin , 1974, Nature.

[8]  Michael D. Wilson,et al.  ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. , 2009, Methods.

[9]  Ting Wang,et al.  ENCODE whole-genome data in the UCSC Genome Browser , 2009, Nucleic Acids Res..

[10]  Steven Henikoff,et al.  Histone variants — ancient wrap artists of the epigenome , 2010, Nature Reviews Molecular Cell Biology.

[11]  S. Henikoff,et al.  Epigenome characterization at single base-pair resolution , 2011, Proceedings of the National Academy of Sciences.

[12]  Benoit G. Bruneau,et al.  Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors , 2009, Nature.

[13]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[14]  K. V. van Holde,et al.  Differential salt fractionation of active and inactive genomic domains in chicken erythrocyte. , 1984, The Journal of biological chemistry.

[15]  S. Henikoff,et al.  Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase , 2000, Nature Biotechnology.

[16]  L. C. Lutter,et al.  Precise location of DNase I cutting sites in the nucleosome core determined by high resolution gel electrophoresis , 1979, Nucleic Acids Res..

[17]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[18]  B. Pugh,et al.  Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution , 2011, Cell.

[19]  Michael Q. Zhang,et al.  Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications , 2010, Nature Biotechnology.

[20]  M. Palumbo,et al.  Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast , 2010, Nucleic acids research.

[21]  I. Albert,et al.  Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome , 2007, Nature.

[22]  Victor V Lobanenkov,et al.  Does CTCF mediate between nuclear organization and gene expression? , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  Andrew J. Bannister,et al.  Regulation of chromatin by histone modifications , 2011, Cell Research.

[24]  Vincenzo Pirrotta,et al.  Characteristic Low Density and Shear Sensitivity of Cross-Linked Chromatin Containing Polycomb Complexes , 2005, Molecular and Cellular Biology.

[25]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[26]  H. Madhani,et al.  Mechanisms that Specify Promoter Nucleosome Location and Identity , 2009, Cell.

[27]  David Haussler,et al.  ENCODE whole-genome data in the UCSC genome browser (2011 update) , 2010, Nucleic Acids Res..

[28]  J. Pérez-Ortín,et al.  A method for genome-wide analysis of DNA helical tension by means of psoralen–DNA photobinding , 2010, Nucleic acids research.

[29]  J. Lis,et al.  In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster , 1985, Molecular and cellular biology.

[30]  S. Henikoff,et al.  Surveying the epigenomic landscape, one base at a time , 2012, Genome Biology.

[31]  Raymond K. Auerbach,et al.  Mapping accessible chromatin regions using Sono-Seq , 2009, Proceedings of the National Academy of Sciences.

[32]  B. Turner,et al.  Immunoprecipitation of native chromatin: NChIP. , 2003, Methods.

[33]  S. Henikoff,et al.  Tripartite organization of centromeric chromatin in budding yeast , 2011, Proceedings of the National Academy of Sciences.

[34]  D. Botstein,et al.  Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF , 2001, Nature.

[35]  Jorja G. Henikoff,et al.  H2A.Z nucleosomes enriched over active genes are homotypic , 2010, Nature Structural &Molecular Biology.

[36]  Xin Wang,et al.  A RSC/Nucleosome Complex Determines Chromatin Architecture and Facilitates Activator Binding , 2010, Cell.

[37]  Carl Wu An exonuclease protection assay reveals heat-shock element and TATA box DNA-binding proteins in crude nuclear extracts , 1985, Nature.

[38]  S. Akbarian,et al.  Isolation of neuronal chromatin from brain tissue , 2008, BMC Neuroscience.

[39]  E. Lander,et al.  The Mammalian Epigenome , 2007, Cell.

[40]  Nicholas A. Kent,et al.  Chromatin particle spectrum analysis: a method for comparative chromatin structure analysis using paired-end mode next-generation DNA sequencing , 2010, Nucleic acids research.

[41]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[42]  S. Henikoff,et al.  A simple method for gene expression and chromatin profiling of individual cell types within a tissue. , 2010, Developmental cell.

[43]  William Stafford Noble,et al.  Global mapping of protein-DNA interactions in vivo by digital genomic footprinting , 2009, Nature Methods.

[44]  B. Franklin Pugh,et al.  High-Resolution Genome-wide Mapping of the Primary Structure of Chromatin , 2011, Cell.

[45]  Z. Weng,et al.  High-Resolution Mapping and Characterization of Open Chromatin across the Genome , 2008, Cell.

[46]  W. Lam,et al.  Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells , 2005, Nature Genetics.

[47]  M. Groudine,et al.  Chromosomal subunits in active genes have an altered conformation. , 1976, Science.

[48]  Kristin R Brogaard,et al.  A base pair resolution map of nucleosome positions in yeast , 2012, Nature.

[49]  James Allan,et al.  Micrococcal Nuclease Does Not Substantially Bias Nucleosome Mapping , 2012, Journal of molecular biology.

[50]  Gautier Koscielny,et al.  Ensembl 2012 , 2011, Nucleic Acids Res..

[51]  G. Crawford,et al.  DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. , 2010, Cold Spring Harbor protocols.