Necessary and sufficient conditions for ODE observer design of descriptor systems

[1]  Stephan Trenn,et al.  Solution Concepts for Linear DAEs: A Survey , 2013 .

[2]  T. Berger,et al.  Hamburger Beiträge zur Angewandten Mathematik Controllability of linear differential-algebraic systems-A survey , 2012 .

[3]  Nariyasu Minamide,et al.  Design of observers for descriptor systems using a descriptor standard form , 1989 .

[4]  Timo Reis,et al.  ODE observers for DAE systems , 2018, IMA J. Math. Control. Inf..

[5]  Amit Ailon,et al.  On the reduced-order causal observer for generalized control systems , 1993 .

[6]  M. Boutayeb,et al.  Design of observers for descriptor systems , 1995, IEEE Trans. Autom. Control..

[7]  V. Syrmos Computational design techniques for reduced-order observers in generalized state-space systems , 1993 .

[8]  F. N. Koumboulis,et al.  Observers for singular systems , 1992 .

[9]  P. N. Paraskevopoulos,et al.  Unifying approach to observers for regular and singular systems , 1993 .

[10]  Franco Blanchini,et al.  Eigenvalue assignment via state observer for descriptor systems , 1991, Kybernetika.

[11]  S. Bhaumik,et al.  Observer Design for Semilinear Descriptor Systems with Applications to Chaos-Based Secure Communication , 2017 .

[12]  Stephen L. Campbell,et al.  Linear Differential Algebraic Equations and Observers , 2015 .

[13]  Timo Reis,et al.  Observers and Dynamic Controllers for Linear Differential-Algebraic Systems , 2017, SIAM J. Control. Optim..

[14]  J. O'Reilly,et al.  Observers for descriptor systems , 1989 .

[15]  Peter C. Müller,et al.  Observer design for descriptor systems , 1999, IEEE Trans. Autom. Control..

[16]  G. Styan,et al.  Equalities and Inequalities for Ranks of Matrices , 1974 .

[17]  Christos Volos,et al.  Observer design for rectangular descriptor systems with incremental quadratic constraints and nonlinear outputs—Application to secure communications , 2020, International Journal of Robust and Nonlinear Control.

[18]  Y. Uetake Pole assignment and observer design for continuous descriptor systems , 1989 .

[19]  Ton Geerts Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case , 1993 .

[20]  Peter C. Müller,et al.  Causal observability of descriptor systems , 1999, IEEE Trans. Autom. Control..

[21]  Shovan Bhaumik,et al.  Full- and reduced-order observer design for rectangular descriptor systems with unknown inputs , 2015, J. Frankl. Inst..

[22]  D. N. Shields Observers for descriptor systems , 1992 .

[23]  P. Dooren,et al.  A reduced order observer for descriptor systems , 1986 .

[24]  P. Müller,et al.  On the observer design for descriptor systems , 1993, IEEE Trans. Autom. Control..

[25]  Jan C. Willems,et al.  Observer synthesis in the behavioral approach , 1999, IEEE Trans. Autom. Control..

[26]  R. Carroll,et al.  Design of Minimal-Order Observer for Singular Systems , 1986, 1986 American Control Conference.

[27]  Mohamed Darouach,et al.  Observers and Observer-Based Control for Descriptor Systems Revisited , 2014, IEEE Transactions on Automatic Control.

[28]  S. Bhaumik,et al.  On detectability and observer design for rectangular linear descriptor systems , 2016 .

[29]  Stephan Trenn,et al.  Kalman controllability decompositions for differential-algebraic systems , 2014, Syst. Control. Lett..

[30]  R. Mukundan,et al.  On the design of observers for generalized state space systems using singular value decomposition , 1983 .