On the numerical Continuation of Isolas of Equilibria

We present a numerical strategy to compute one-parameter families of isolas of equilibrium solutions in ODEs. Isolas are solution branches closed in parameter space. Numerical continuation is required to compute one single isola since it contains at least one unstable segment. We show how to use pseudo-arclength predictor-corrector schemes in order to follow an entire isola in parameter space, as an individual object, by posing a suitable algebraic problem. We continue isolas of equilibria in a two-dimensional dynamical system, the so-called continuous stirred tank reactor model, and also in a three-dimensional model related to plasma physics. We then construct a toy model and follow a family of isolas past a fold and illustrate how to initiate the computation close to a formation center, using approximate ellipses in a model inspired by the Van der Pol equation. We also show how to introduce node adaptivity in the discretization of the isola, so as to concentrate nodes in region with higher curvature. We conclude by commenting on the extension of the proposed numerical strategy to the case of isolas of periodic orbits.

[1]  Michael E. Henderson,et al.  Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds , 2002, Int. J. Bifurc. Chaos.

[2]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[3]  Karen C. Hegener,et al.  Engineering and applied sciences , 1975 .

[4]  Bart E. Oldeman,et al.  Bifurcation Structures in a Model of a CO2 Laser with a Fast saturable Absorber , 2011, Int. J. Bifurc. Chaos.

[5]  Frank Schilder,et al.  An Extended Continuation Problem for Bifurcation Analysis in the Presence of Constraints , 2010, Journal of Computational and Nonlinear Dynamics.

[6]  Frank Schilder,et al.  Computing Arnol′d tongue scenarios , 2007, J. Comput. Phys..

[7]  Wolf-Jürgen Beyn,et al.  Phase Conditions, Symmetries and PDE Continuation , 2007 .

[8]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[9]  D. Aronson,et al.  Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study , 1982 .

[10]  N. M. M. C. -. Rittemard CONTINUATION METHODS AND DISJOINT EQUILIBRIA , 2009 .

[11]  M. van Veldhuizen A new algorithm for the numerical approximation of an invariant curve , 1987 .

[12]  Rutherford Aris,et al.  Numerical computation of invariant circles of maps , 1985 .

[13]  Bernard J. Matkowsky,et al.  ON THE BIRTH OF ISOLAS , 1982 .

[14]  M. van Veldhuizen,et al.  Convergence results for invariant curve algorithms , 1988 .

[15]  L. Perko Global families of limit cycles of planar analytic systems , 1990 .

[16]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[17]  Aubrey B. Poore,et al.  The classification of the dynamic behavior of continuous stirred tank reactors—influence of reactor residence time , 1976 .

[18]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[19]  Alan R. Champneys,et al.  Numerical Computation of Coherent Structures , 2007 .

[20]  Kenneth Showalter,et al.  Bistability, mushrooms, and isolas , 1984 .

[21]  Metamorphosis of plasma turbulence-shear-flow dynamics through a transcritical bifurcation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[23]  E. J. Doedel,et al.  AUTO: a program for the automatic bifurcation analysis of autonomous systems , 1980 .

[24]  David R. Dellwo A constructive theory of isolas suported by parabolic cusps, centers and bifurcations points , 1986 .

[25]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[26]  Vladimír Janovský,et al.  Computer-aided analysis of imperfect bifurcation diagrams, I. simple bifurcation point and isola formation centre. , 1992 .

[27]  J. P. Kernevez,et al.  Optimization by Continuation , 1990 .

[28]  R. Russell,et al.  Adaptive Mesh Selection Strategies for Solving Boundary Value Problems , 1978 .

[29]  Bernd Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems , 2007 .