Homotopy techniques for solving sparse column support determinantal polynomial systems

Let K be a field of characteristic zero with K its algebraic closure. Given a sequence of polynomials g = (g_1 ,. .. , g_s) ∈ K[x_1 , ... , x_n ] s and a polynomial matrix F = [f_{i,j} ] ∈ K[x_1 , ... , x_n ] p×q , with p ≤ q, we are interested in determining the isolated points of V_p (F , g), the algebraic set of points in K at which all polynomials in g and all p-minors of F vanish, under the assumption n = q − p + s + 1. Such polynomial systems arise in a variety of applications including for example polynomial optimization and computational geometry. We design a randomized sparse homotopy algorithm for computing the isolated points in V_p (F , g) which takes advantage of the determinantal structure of the system defining V_p (F , g). Its complexity is polynomial in the maximum number of isolated solutions to such systems sharing the same sparsity pattern and in some combinatorial quantities attached to the structure of such systems. It is the first algorithm which takes advantage both on the determinantal structure and sparsity of input polynomials. We also derive complexity bounds for the particular but important case where g and the columns of F satisfy weighted degree constraints. Such systems arise naturally in the computation of critical points of maps restricted to algebraic sets when both are invariant by the action of the symmetric group.

[1]  Éric Schost,et al.  On the geometry of polar varieties , 2009, Applicable Algebra in Engineering, Communication and Computing.

[2]  Éric Schost,et al.  A Baby Step–Giant Step Roadmap Algorithm for General Algebraic Sets , 2012, Found. Comput. Math..

[3]  L. Kronecker Grundzüge einer arithmetischen Theorie der algebraischen Grössen. (Abdruck einer Festschrift zu Herrn E. E. Kummers Doctor-Jubiläum, 10. September 1881.). , 2022 .

[4]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[5]  Marina Weber,et al.  Using Algebraic Geometry , 2016 .

[6]  George Labahn,et al.  Computing critical points for invariant algebraic systems , 2020, J. Symb. Comput..

[7]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[8]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[9]  Pierre-Jean Spaenlehauer,et al.  On the Complexity of Computing Critical Points with Gröbner Bases , 2013, SIAM J. Optim..

[10]  F. S. Macaulay,et al.  The Algebraic Theory of Modular Systems , 1972 .

[11]  Aharon Gavriel Beged-dov,et al.  Lower and Upper Bounds for the Number of Lattice Points in a Simplex , 1972 .

[12]  A. G. Kushnirenko,et al.  Newton polytopes and the Bezout theorem , 1976 .

[13]  Marc Giusti,et al.  A G ] 1 6 D ec 2 01 3 Degeneracy loci and polynomial equation solving 1 , 2014 .

[14]  Stephen S.-T. Yau,et al.  An upper estimate of integral points in real simplices with an application to singularity theory , 2006 .

[15]  Marc Giusti,et al.  Generalized polar varieties: geometry and algorithms , 2005, J. Complex..

[16]  Juan Sabia,et al.  Computing isolated roots of sparse polynomial systems in affine space , 2010, Theor. Comput. Sci..

[17]  Ariel Waissbein,et al.  Deformation Techniques for Sparse Systems , 2006, Found. Comput. Math..

[18]  Éric Schost,et al.  Bit complexity for multi-homogeneous polynomial system solving - Application to polynomial minimization , 2016, J. Symb. Comput..

[19]  Daniel Perrucci,et al.  A Probabilistic Symbolic Algorithm to Find the Minimum of a Polynomial Function on a Basic Closed Semialgebraic Set , 2013, Discret. Comput. Geom..

[20]  Jean-Charles Faugère,et al.  Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology , 2010, ISSAC.

[21]  Mohab Safey El Din,et al.  Critical Point Computations on Smooth Varieties: Degree and Complexity Bounds , 2016, ISSAC.

[22]  Lihong Zhi,et al.  Global optimization of polynomials using generalized critical values and sums of squares , 2010, ISSAC.

[23]  Wenrui Hao,et al.  Algorithm 976 , 2017, ACM Trans. Math. Softw..

[24]  Mohab Safey El Din,et al.  Probabilistic Algorithm for Polynomial Optimization over a Real Algebraic Set , 2013, SIAM J. Optim..

[25]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.

[26]  J. E. Morais,et al.  When Polynomial Equation Systems Can Be "Solved" Fast? , 1995, AAECC.

[27]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[28]  Éric Schost,et al.  A Nearly Optimal Algorithm for Deciding Connectivity Queries in Smooth and Bounded Real Algebraic Sets , 2013, J. ACM.

[29]  Joos Heintz,et al.  Deformation Techniques for Efficient Polynomial Equation Solving , 2000, J. Complex..

[30]  Marie-Françoise Roy,et al.  Zeros, multiplicities, and idempotents for zero-dimensional systems , 1996 .

[31]  Juan Sabia,et al.  Elimination for Generic Sparse Polynomial Systems , 2014, Discret. Comput. Geom..

[32]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[33]  Marc Giusti,et al.  Intrinsic complexity estimates in polynomial optimization , 2013, J. Complex..

[34]  Rosita Wachenchauzer,et al.  Polynomial equation solving by lifting procedures for ramified fibers , 2004, Theor. Comput. Sci..

[35]  Jonathan D. Hauenstein,et al.  Cell decomposition of almost smooth real algebraic surfaces , 2013, Numerical Algorithms.

[36]  Askold Khovanskii,et al.  Newton polyhedra and toroidal varieties , 1977 .

[37]  Marc Giusti,et al.  Generalized polar varieties and an efficient real elimination , 2004, Kybernetika.

[38]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[39]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[40]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[41]  Juan Sabia,et al.  Affine solution sets of sparse polynomial systems , 2011, J. Symb. Comput..

[42]  Éric Schost,et al.  Solving determinantal systems using homotopy techniques , 2018, J. Symb. Comput..

[43]  Jean-Charles Faugère,et al.  Critical points and Gröbner bases: the unmixed case , 2012, ISSAC.

[44]  Patrizia M. Gianni,et al.  Algebraic Solution of Systems of Polynomial Equations Using Groebner Bases , 1987, AAECC.

[45]  James Demmel,et al.  Minimizing Polynomials via Sum of Squares over the Gradient Ideal , 2004, Math. Program..

[46]  L. Kronecker Grundzüge einer arithmetischen Theorie der algebraische Grössen. , 2022 .

[47]  J. Hauenstein Numerically Computing Real Points on Algebraic Sets , 2011, Acta Applicandae Mathematicae.

[48]  Luis M. Pardo,et al.  Deformation techniques to solve generalised Pham systems , 2004, Theor. Comput. Sci..