Energetics of intrinsic point defects in uranium dioxide from electronic-structure calculations

Abstract The stability range of intrinsic point defects in uranium dioxide is determined as a function of temperature, oxygen partial pressure, and non-stoichiometry. The computational approach integrates high accuracy ab initio electronic-structure calculations and thermodynamic analysis supported by experimental data. In particular, the density functional theory calculations are performed at the level of the spin polarized, generalized gradient approximation and includes the Hubbard U term; as a result they predict the correct anti-ferromagnetic insulating ground state of uranium oxide. The thermodynamic calculations enable the effects of system temperature and partial pressure of oxygen on defect formation energy to be determined. The predicted equilibrium properties and defect formation energies for neutral defect complexes match trends in the experimental literature quite well. In contrast, the predicted values for charged complexes are lower than the measured values. The calculations predict that the formation of oxygen interstitials becomes increasingly difficult as higher temperatures and reducing conditions are approached.

[1]  C. R. A. Catlow,et al.  The stability of fission products in uranium dioxide , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[2]  Kevin Leung,et al.  Designing meaningful density functional theory calculations in materials science—a primer , 2004 .

[3]  Elizabeth C. Dickey,et al.  Prediction of high-temperature point defect formation in TiO2 from combined ab initio and thermodynamic calculations , 2007 .

[4]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[5]  C. Catlow,et al.  Shell model calculations of the energies of formation of point defects in alkaline earth fluorides , 1973 .

[6]  A. Alavi,et al.  THE OXIDATION OF NIAL: What Can We Learn from Ab Initio Calculations? , 2005 .

[7]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[8]  Michel W. Barsoum,et al.  Fundamentals of Ceramics , 1996 .

[9]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[10]  Michel Freyss,et al.  Point defects in uranium dioxide: Ab initio pseudopotential approach in the generalized gradient approximation , 2005 .

[11]  G. Ceder,et al.  First-principles study of native point defects in ZnO , 2000 .

[12]  C. Catlow,et al.  Oxygen diffusion in UO2, ThO2 and PuO2. A review , 1987 .

[13]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[14]  William T. Thompson,et al.  Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel , 2004 .

[15]  Donald R. Olander,et al.  Fundamental Aspects of Nuclear Reactor Fuel Elements , 1976 .

[16]  Pierre Villars,et al.  Pearson's handbook of crystallographic data for intermetallic phases , 1985 .

[17]  A. Pasturel,et al.  Correlation effects and energetics of point defects in uranium dioxide: a first principle investigation , 2007 .

[18]  Y. Baer,et al.  Electronic structure and Coulomb correlation energy in UO2 single crystal , 1980 .

[19]  K. Schwarz,et al.  Magnetic structure and electric-field gradients of uranium dioxide: An ab initio study , 2004 .

[20]  H. Blank,et al.  A study of the ternary system U02-Pu02-Pu203 , 1970 .

[21]  Yasunori Kaneta,et al.  First-Principles Calculation of Point Defects in Uranium Dioxide , 2006 .

[22]  I. Barin Thermochemical data of pure substances , 1989 .

[23]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[24]  Adrian P. Sutton,et al.  Effect of Mott-Hubbard correlations on the electronic structure and structural stability of uranium dioxide , 1997 .

[25]  Han-Chen Huang,et al.  Quantum mechanical calculations of uranium phases and niobium defects in γ-uranium , 2008 .

[26]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[27]  Marc Hou,et al.  Comparison of interatomic potentials for UO2. Part I: Static calculations , 2007 .

[28]  Juan C. Ramirez,et al.  Models and simulations of nuclear fuel materials properties , 2007 .

[29]  A. Pasturel,et al.  Point defects in uranium dioxide , 1998 .

[30]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[31]  Hansjoachim Matzke,et al.  Atomic transport properties in UO2 and mixed oxides (U, Pu)O2 , 1987 .

[32]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[33]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[34]  Kazuhiro Yamada,et al.  Evaluation of thermal properties of uranium dioxide by molecular dynamics , 2000 .