Characterizing chromatin interactions of regulatory elements and nucleosome positions, using Hi-C, Micro-C, and promoter capture Micro-C

[1]  S. Rhie,et al.  Correction: Characterizing chromatin interactions of regulatory elements and nucleosome positions, using Hi‑C, Micro‑C, and promoter capture Micro‑C , 2022, Epigenetics & Chromatin.

[2]  A. S. Hansen,et al.  Region Capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments , 2022, bioRxiv.

[3]  A. M. Oudelaar,et al.  Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF , 2021, Nature Communications.

[4]  R. Schwessinger,et al.  Defining genome architecture at base-pair resolution , 2021, Nature.

[5]  Feng Yue,et al.  Genome-wide detection of enhancer-hijacking events from chromatin interaction data in rearranged genomes , 2021, Nature Methods.

[6]  S. Rhie,et al.  Molecular and computational approaches to map regulatory elements in 3D chromatin structure , 2021, Epigenetics & Chromatin.

[7]  Wenjun Wang,et al.  Chromosome structural variation in tumorigenesis: mechanisms of formation and carcinogenesis , 2020, Epigenetics & chromatin.

[8]  P. Farnham,et al.  TENET 2.0: Identification of key transcriptional regulators and enhancers in lung adenocarcinoma , 2020, PLoS genetics.

[9]  Erez Lieberman Aiden,et al.  Analysis of Hi-C data using SIP effectively identifies loops in organisms from C. elegans to mammals , 2020, Genome research.

[10]  Stefano Lonardi,et al.  Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation , 2020, Genome Biology.

[11]  P. Farnham,et al.  A high-resolution 3D epigenomic map reveals insights into the creation of the prostate cancer transcriptome , 2019, Nature Communications.

[12]  Leonid A. Mirny,et al.  Ultrastructural details of mammalian chromosome architecture , 2019, bioRxiv.

[13]  Anders S. Hansen,et al.  Resolving the 3D landscape of transcription-linked mammalian chromatin folding , 2019, bioRxiv.

[14]  Nezar Abdennur,et al.  Cooler: scalable storage for Hi-C data and other genomically-labeled arrays , 2019, bioRxiv.

[15]  B. Berman,et al.  Using 3D epigenomic maps of primary olfactory neuronal cells from living individuals to understand gene regulation , 2018, Science Advances.

[16]  Mikhail G. Dozmorov,et al.  HiCcompare: an R-package for joint normalization and comparison of HI-C datasets , 2018, BMC Bioinformatics.

[17]  Kai Wang,et al.  3C and 3C-based techniques: the powerful tools for spatial genome organization deciphering , 2018, Molecular Cytogenetics.

[18]  P. Farnham,et al.  ZFX acts as a transcriptional activator in multiple types of human tumors by binding downstream from transcription start sites at the majority of CpG island promoters , 2018, Genome research.

[19]  Leonid A. Mirny,et al.  Emerging Evidence of Chromosome Folding by Loop Extrusion , 2018, bioRxiv.

[20]  F. Ay,et al.  Identification of copy number variations and translocations in cancer cells from HiC data , 2017 .

[21]  Michael P Snyder,et al.  Static and dynamic DNA loops form AP-1 bound activation hubs during macrophage development , 2017, bioRxiv.

[22]  Ting Wang,et al.  The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions , 2017, Genome Biology.

[23]  Howard Y. Chang,et al.  HiChIP: efficient and sensitive analysis of protein-directed genome architecture , 2016, Nature Methods.

[24]  James T. Robinson,et al.  Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. , 2016, Cell systems.

[25]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[26]  P. Farnham,et al.  Effects on the transcriptome upon deletion of a distal element cannot be predicted by the size of the H3K27Ac peak in human cells , 2016, Nucleic acids research.

[27]  X. Zhou,et al.  TopDom: an efficient and deterministic method for identifying topological domains in genomes , 2015, Nucleic acids research.

[28]  Dariusz M Plewczynski,et al.  CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription , 2015, Cell.

[29]  Jean-Philippe Vert,et al.  HiC-Pro: an optimized and flexible pipeline for Hi-C data processing , 2015, Genome Biology.

[30]  Peter H. L. Krijger,et al.  CTCF Binding Polarity Determines Chromatin Looping. , 2015, Molecular cell.

[31]  Steven J. M. Jones,et al.  The Molecular Taxonomy of Primary Prostate Cancer , 2015, Cell.

[32]  Jonathan M. Cairns,et al.  CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data , 2015, Genome Biology.

[33]  Nir Friedman,et al.  Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C , 2015, Cell.

[34]  Peter A. Jones,et al.  The role of DNA methylation in directing the functional organization of the cancer epigenome , 2015, Genome research.

[35]  M. Rubin,et al.  Genomic rearrangements in prostate cancer , 2015, Current opinion in urology.

[36]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[37]  Fidel Ramírez,et al.  deepTools: a flexible platform for exploring deep-sequencing data , 2014, Nucleic Acids Res..

[38]  Simon G Coetzee,et al.  Nucleosome positioning and histone modifications define relationships between regulatory elements and nearby gene expression in breast epithelial cells , 2014, BMC Genomics.

[39]  Gangning Liang,et al.  Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules , 2012, Genome research.

[40]  Emmanuel Barillot,et al.  HiTC - Exploration of High Throughput ’C’ experiments , 2013 .

[41]  J. Dekker,et al.  The long-range interaction landscape of gene promoters , 2012, Nature.

[42]  Marc D. Perry,et al.  ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia , 2012, Genome research.

[43]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[44]  K. Zhao,et al.  Characterization of genome-wide enhancer-promoter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization , 2012, Cell Research.

[45]  Meng Li,et al.  Somatic Mutations in the Chromatin Remodeling Gene ARID1A Occur in Several Tumor Types , 2011, Human mutation.

[46]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[47]  A. de Klein,et al.  Overexpression of Full-Length ETV1 Transcripts in Clinical Prostate Cancer Due to Gene Translocation , 2011, PloS one.

[48]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[49]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[50]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[51]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[52]  K. Sandhu,et al.  Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions , 2006, Nature Genetics.

[53]  C. Nusbaum,et al.  Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. , 2006, Genome research.

[54]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[55]  H R Drew,et al.  DNA bending and its relation to nucleosome positioning. , 1985, Journal of molecular biology.

[56]  P. Farnham,et al.  Defining Regulatory Elements in the Human Genome Using Nucleosome Occupancy and Methylome Sequencing (NOMe-Seq). , 2018, Methods in molecular biology.

[57]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[58]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[59]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..

[60]  I. Amit,et al.  Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome , 2009, Science.

[61]  Jin-Tang Dong Chromosomal Deletions and Tumor Suppressor Genes in Prostate Cancer , 2004, Cancer and Metastasis Reviews.

[62]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..