Compact representations for fast nonrigid registration of medical images

We develop efficient techniques for the non-rigid registration of medical images by using representations that adapt to the anatomy found in such images. Images of anatomical structures typically have uniform intensity interiors and smooth boundaries. We create methods to represent such regions compactly using tetrahedra. Unlike voxel-based representations, tetrahedra can accurately describe the expected smooth surfaces of medical objects. Furthermore, the interior of such objects can be represented using a small number of tetrahedra. Rather than describing a medical object using tens of thousands of voxels, our representations generally contain only a few thousand elements. Tetrahedra facilitate the creation of efficient non-rigid registration algorithms based on finite element methods (FEM). We create a fast, FEM-based method to non-rigidly register segmented anatomical structures from two subjects. Using our compact tetrahedral representations, this method generally requires less than one minute of processing time on a desktop PC. We also create a novel method for the non-rigid registration of gray scale images. To facilitate a fast method, we create a tetrahedral representation of a displacement field that automatically adapts to both the anatomy in an image and to the displacement field. The resulting algorithm has a computational cost that is dominated by the number of nodes in the mesh (about 10,000), rather than the number of voxels in an image (nearly 10,000,000). For many non-rigid registration problems, we can find a transformation from one image to another in five minutes. This speed is important as it allows use of the algorithm during surgery. We apply our algorithms to find correlations between the shape of anatomical structures and the presence of schizophrenia. We show that a study based on our representations outperforms studies based on other representations. We also use the results of our non-rigid registration algorithm as the basis of a segmentation algorithm. That algorithm also outperforms other methods in our tests, producing smoother segmentations and more accurately reproducing manual segmentations. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

[1]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[2]  David Eppstein,et al.  Optimal point placement for mesh smoothing , 1997, SODA '97.

[3]  Guido Gerig,et al.  Multiscale medial shape-based analysis of image objects , 2003, Proc. IEEE.

[4]  Yoshinobu Sato,et al.  A New Similarity Measure for Nonrigid Volume Registration Using Known Joint Distribution of Target Tissue: Application to Dynamic CT Data of the Liver , 2002, MICCAI.

[5]  Jerry L. Prince,et al.  Brain image registration based on curve mapping , 1994, Proceedings of IEEE Workshop on Biomedical Image Analysis.

[6]  Timothy F. Cootes,et al.  A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.

[7]  Timothy F. Cootes,et al.  The Use of Active Shape Models for Locating Structures in Medical Images , 1993, IPMI.

[8]  Mark T. Jones,et al.  An efficient parallel algorithm for mesh smoothing , 1995 .

[9]  R. Kikinis,et al.  Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. , 2003, The American journal of psychiatry.

[10]  Joachim Dengler,et al.  The Dynamic Pyramid - a Model for Motion Analysis with Controlled Continuity , 1988, Int. J. Pattern Recognit. Artif. Intell..

[11]  Timothy F. Cootes,et al.  Use of active shape models for locating structures in medical images , 1994, Image Vis. Comput..

[12]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  I. Daubechies,et al.  Wavelets on irregular point sets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[15]  Tina Kapur,et al.  Model based three dimensional medical image segmentation , 1999 .

[16]  Guido Gerig,et al.  Elastic model-based segmentation of 3-D neuroradiological data sets , 1999, IEEE Transactions on Medical Imaging.

[17]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[18]  Ronald Fedkiw,et al.  Tetrahedral Mesh Generation for Deformable Bodies , 2003 .

[19]  Ron Kikinis,et al.  Volumetric Evaluation of the Thalamus in Schizophrenic Male Patients Using Magnetic Resonance Imaging , 1998, Biological Psychiatry.

[20]  K. Rohr,et al.  Biomechanical modeling of the human head for physically based, nonrigid image registration , 1999, IEEE Transactions on Medical Imaging.

[21]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM Journal on Scientific Computing.

[22]  M. LeMay,et al.  Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. , 1992, The New England journal of medicine.

[23]  Michael Mills,et al.  Blockmatching motion estimation algorithms-new results , 1990 .

[24]  Christophe Chefd'Hotel,et al.  Practical non-parametric density estimation on a transformation group for vision , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[25]  K. Chinzei,et al.  Mechanical properties of brain tissue in tension. , 2002, Journal of biomechanics.

[26]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[27]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[28]  Paul A. Yushkevich,et al.  Segmentation, registration, and measurement of shape variation via image object shape , 1999, IEEE Transactions on Medical Imaging.

[29]  Bharat K. Soni,et al.  Mesh Generation , 2020, Handbook of Computational Geometry.

[30]  Daniel Rueckert,et al.  Non-rigid Registration of Breast MR Images Using Mutual Information , 1998, MICCAI.

[31]  Alex Pentland,et al.  Shape analysis of brain structures using physical and experimental modes , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Joel R. Phillips,et al.  Rapid solution of potential integral equations in complicated 3-dimensional geometries , 1997 .

[33]  Polina Golland,et al.  Statistical shape analysis of anatomical structures , 2001 .

[34]  Timothy F. Cootes,et al.  Training Models of Shape from Sets of Examples , 1992, BMVC.

[35]  James C. Gee,et al.  Atlas warping for brain morphometry , 1998, Medical Imaging.

[36]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[37]  W. Freeman Steerable filters and local analysis of image structure , 1992 .

[38]  Michael E. Leventon,et al.  Statistical models in medical image analysis , 2000 .

[39]  Dinggang Shen,et al.  HAMMER: hierarchical attribute matching mechanism for elastic registration , 2002, IEEE Transactions on Medical Imaging.

[40]  Nobuhiko Hata,et al.  A Volumetric Optical Flow Method for Measurement of Brain Deformation from Intraoperative Magnetic Resonance Images , 1999, MICCAI.

[41]  Martin Berzins,et al.  Mesh Quality: A Function of Geometry, Error Estimates or Both? , 1999, Engineering with Computers.

[42]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[43]  J. Udupa,et al.  Iterative relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[44]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  John W. Fisher,et al.  A Unified Statistical and Information Theoretic Framework for Multi-modal Image Registration , 2003, IPMI.

[46]  W. Eric L. Grimson,et al.  Enhanced Spatial Priors for Segmentation of Magnetic Resonance Imagery , 1998, MICCAI.

[47]  W. Eric L. Grimson,et al.  Incorporating Non-rigid Registration into Expectation Maximization Algorithm to Segment MR Images , 2002, MICCAI.

[48]  M. Ferrant Physics-based Deformable Modeling of Volumes and Surfaces for Medical Image Registration, Segmentation and Visualization , 2001 .

[49]  Heinrich Müller,et al.  A Scheme for Edge-based Adaptive Tetrahedron Subdivision , 1997, VisMath.

[50]  Ron Kikinis,et al.  Registration of 3D Intraoperative MR Images of the Brain Using a Finite Element Biomechanical Model , 2001, IEEE Trans. Medical Imaging.

[51]  Haiying Liu,et al.  Using Points and Surfaces to Improve Voxel-Based Non-rigid Registration , 2002, MICCAI.

[52]  Guy Marchal,et al.  Multi-modality image registration by maximization of mutual information , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[53]  Paul Suetens,et al.  Non-rigid Multimodal Image Registration Using Mutual Information , 1998, MICCAI.

[54]  O. Faugeras,et al.  Level set based segmentation with intensity and curvature priors , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[55]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[56]  R Kikinis,et al.  Left planum temporale volume reduction in schizophrenia. , 1999, Archives of general psychiatry.

[57]  Haiying Liu,et al.  A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations , 2001, MICCAI.

[58]  David Arenberg,et al.  Normal Human Aging: The Baltimore Longitudinal Study on Aging , 1984 .

[59]  James C. Gee,et al.  Probabilistic Matching of Brain Images , 1995 .

[60]  W. Eric L. Grimson,et al.  Performance Issues in Shape Classification , 2002, MICCAI.

[61]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[62]  Jean-Philippe Thiran,et al.  Surface Based Atlas Matching of the Brain Using Deformable Surfaces and Volumetric Finite Elements , 2001, MICCAI.

[63]  J. Z. Zhu,et al.  The finite element method , 1977 .

[64]  Ron Kikinis,et al.  Serial Intraoperative MR Imaging of Brain Shift , 2001 .

[65]  Koenraad Van Leemput,et al.  Automated model-based bias field correction of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[66]  R. Kikinis,et al.  Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging , 1992, Journal of magnetic resonance imaging : JMRI.

[67]  Eitan Grinspun,et al.  Natural hierarchical refinement for finite element methods , 2003 .

[68]  C. Davatzikos Spatial normalization of 3D brain images using deformable models. , 1996, Journal of computer assisted tomography.

[69]  O. Faugeras,et al.  A variational approach to multi-modal image matching , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[70]  M. Levas OBBTree : A Hierarchical Structure for Rapid Interference Detection , .

[71]  Martin Styner,et al.  Shape versus Size: Improved Understanding of the Morphology of Brain Structures , 2001, MICCAI.

[72]  Simon K. Warfield,et al.  Deformable Modeling for Characterizing Biomedical Shape Changes , 2000, DGCI.

[73]  Supun Samarasekera,et al.  Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation , 1996, CVGIP Graph. Model. Image Process..

[74]  G. Marchal,et al.  Multi-modal volume registration by maximization of mutual information , 1997 .

[75]  B. Geiger Three-dimensional modeling of human organs and its application to diagnosis and surgical planning , 1993 .

[76]  Ron Kikinis,et al.  Adaptive, template moderated, spatially varying statistical classification , 2000, Medical Image Anal..

[77]  N. Hata,et al.  An integrated visualization system for surgical planning and guidance using image fusion and an open MR , 2001, Journal of magnetic resonance imaging : JMRI.

[78]  James S. Duncan,et al.  Real Time 3D Brain Shift Compensation , 1999, IPMI.

[79]  A. Kelemen,et al.  Three-dimensional model-based segmentation of brain MRI , 1998, Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162).

[80]  Jerry L Prince,et al.  A computerized approach for morphological analysis of the corpus callosum. , 1996, Journal of computer assisted tomography.

[81]  Lawrence H. Staib,et al.  Elastic Model Based Non-rigid Registration Incorporation Statistical Shape Information , 1998, MICCAI.

[82]  W. Eric L. Grimson,et al.  Model-based curve evolution technique for image segmentation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[83]  Nicholas Ayache,et al.  Three-dimensional multimodal brain warping using the Demons algorithm and adaptive intensity corrections , 2001, IEEE Transactions on Medical Imaging.

[84]  Michael Ortiz,et al.  Generation of Tetrahedral Finite Element Meshes: Variational Delaunay Approach , 1998, IMR.

[85]  Keith D. Paulsen,et al.  In vivo quantification of a homogeneous brain deformation model for updating preoperative images during surgery , 2000, IEEE Transactions on Biomedical Engineering.

[86]  James S. Duncan,et al.  The Active Elastic Model , 2001, IPMI.

[87]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[88]  W. Beyer CRC Standard Probability And Statistics Tables and Formulae , 1990 .

[89]  W. Eric L. Grimson,et al.  Fast Linear Elastic Matching Without Landmarks , 2001, MICCAI.

[90]  Hristo Djidjev,et al.  Force-Directed Methods for Smoothing Unstructured Triangular and Tetrahedral Meshes , 2000, IMR.

[91]  Jerry L. Prince,et al.  Adaptive fuzzy segmentation of magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[92]  Carl Ollivier-Gooch,et al.  A comparison of tetrahedral mesh improvement techniques , 1996 .

[93]  Baba C. Vemuri,et al.  An Accurate and Efficient Bayesian Method for Automatic Segmentation of Brain MRI , 2002, ECCV.

[94]  W. Eric L. Grimson,et al.  Deformation Analysis for Shape Based Classification , 2001, IPMI.

[95]  Jean-Philippe Thiran,et al.  Affine Registration with Feature Space Mutual Information , 2001, MICCAI.

[96]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[97]  Ruzena Bajcsy,et al.  The Institute For Research In Cognitive Science Elastically Deforming a Three-Dimensional Atlas to Match Anatomical Brain Images , 1993 .

[98]  R. Kikinis,et al.  Nonlinear Registration and Template-Driven Segmentation , 1999 .

[99]  Ron Kikinis,et al.  A Binary Entropy Measure to Assess Nonrigid Registration Algorithms , 2001, MICCAI.