Photoreceptor types and distributions in the retinae of insectivores
暂无分享,去创建一个
[1] K. C. Wikler,et al. Retinoid‐dependent gene expression regulates early morphological events in the development of the murine retina , 2000, The Journal of comparative neurology.
[2] J. Nathans. The Evolution and Physiology of Human Color Vision Insights from Molecular Genetic Studies of Visual Pigments , 1999, Neuron.
[3] C. W. Kilpatrick,et al. Phylogenetic Relationships of the Order Insectivora Based on Complete 12S rRNA Sequences from Mitochondria , 1999 .
[4] L. Peichl,et al. Horizontal cells of the rabbit retina are non‐selectively connected to the cones , 1999, The European journal of neuroscience.
[5] U. Dräger,et al. Dorsal and ventral retinal territories defined by retinoic acid synthesis, break-down and nuclear receptor expression , 1999, Mechanisms of Development.
[6] U. Grünert,et al. Distribution of photoreceptor types in the retina of a marsupial, the tammar wallaby (Macropus eugenii) , 1999, Visual Neuroscience.
[7] E. Pugh,et al. UV- and Midwave-Sensitive Cone-Driven Retinal Responses of the Mouse: A Possible Phenotype for Coexpression of Cone Photopigments , 1999, The Journal of Neuroscience.
[8] G. H. Jacobs. Photopigments and seeing--lessons from natural experiments: the Proctor lecture. , 1998, Investigative ophthalmology & visual science.
[9] Diana J. Kao,et al. Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[10] L. Peichl,et al. Absence of short‐wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia) , 1998, The European journal of neuroscience.
[11] G H Jacobs,et al. The topography of rod and cone photoreceptors in the retina of the ground squirrel , 1998, Visual Neuroscience.
[12] M. Stanhope,et al. Endemic African mammals shake the phylogenetic tree , 1997, Nature.
[13] M. Nei,et al. Color vision of ancestral organisms of higher primates. , 1997, Molecular biology and evolution.
[14] L. Peichl. Die Augen der Säugetiere: Unterschiedliche Blicke in die Welt , 1997 .
[15] Á. Szél,et al. Distribution of cone photoreceptors in the mammalian retina , 1996, Microscopy research and technique.
[16] G. H. Jacobs,et al. Regional variations in the relative sensitivity to UV light in the mouse retina , 1995, Visual Neuroscience.
[17] Á. Szél,et al. Two different visual pigments in one retinal cone cell , 1994, Neuron.
[18] H. Burda,et al. Visual and hearing biology of shrews , 1994 .
[19] J. Nathans,et al. A sequence upstream of the mouse blue visual pigment gene directs blue cone-specific transgene expression in mouse retinas , 1994, Visual Neuroscience.
[20] L. Peichl,et al. Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig , 1994, Visual Neuroscience.
[21] B Ehinger,et al. Complementary cone fields of the rabbit retina. , 1994, Investigative ophthalmology & visual science.
[22] G. H. Jacobs. THE DISTRIBUTION AND NATURE OF COLOUR VISION AMONG THE MAMMALS , 1993, Biological reviews of the Cambridge Philosophical Society.
[23] J. T. Erichsen,et al. Immunocytochemical identification of photoreceptor populations in the tree shrew retina , 1993, Brain Research.
[24] G. Aguirre,et al. Unique topographic separation of two spectral classes of cones in the mouse retina , 1992, The Journal of comparative neurology.
[25] Donald J. Zack,et al. A locus control region adjacent to the human red and green visual pigment genes , 1992, Neuron.
[26] Á. Szél,et al. Two cone types of rat retina detected by anti-visual pigment antibodies. , 1992, Experimental eye research.
[27] Y. Fukada,et al. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[28] H. Künzle,et al. Primary structure and oxygen-binding properties of the hemoglobin from the lesser hedgehog tenrec (Echinops telfairi, Zalambdodonta). Evidence for phylogenetic isolation. , 1991, Biological chemistry Hoppe-Seyler.
[29] H. Young,et al. Rod‐signal interneurons in the rabbit retina: 1. Rod bipolar cells , 1991, The Journal of comparative neurology.
[30] L. Peichl,et al. Topography of cones and rods in the tree shrew retina , 1989, The Journal of comparative neurology.
[31] S. Yokoyama,et al. Molecular evolution of human visual pigment genes. , 1989, Molecular biology and evolution.
[32] Á. Szél,et al. Identification of the blue‐sensitive cones in the mammalian retina by anti‐visual pigment antibody , 1988, The Journal of comparative neurology.
[33] Á. Szél,et al. Monoclonal antibody-recognizing cone visual pigment. , 1986, Experimental eye research.
[34] J. Nathans,et al. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.
[35] M. Lavail,et al. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy , 1979, The Journal of comparative neurology.
[36] M. Braniš. Morphology of the eye of shrews soricidae insectivora , 1979 .
[37] R. H. Steinberg,et al. The distribution of rods and cones in the retina of the cat (Felis domesticus) , 1973, The Journal of comparative neurology.
[38] A Janke,et al. The phylogenetic position of the Talpidae within eutheria based on analysis of complete mitochondrial sequences. , 2000, Molecular biology and evolution.
[39] D. Stull,et al. EMBRYONIC PATTERNING OF CONE SUBTYPES IN THE MAMMALIAN RETINA , 1998 .
[40] George Gaylord Simpson,et al. Classification of mammals : above the species level , 1997 .
[41] Á. Szél,et al. Binding sites of photoreceptor-specific antibodies COS-1, OS-2 and AO. , 1993, Current eye research.
[42] A. Reichenbach. Two types of neuronal precursor cells in the mammalian retina--a short review. , 1993, Journal fur Hirnforschung.
[43] M. Novacek,et al. Definition and Relationships of Lipotyphla , 1993 .
[44] C. Claussen,et al. Bau und Funktion der optischen Sinnesorgane bei der Waldspitzmaus (Sorex araneus) und der Gartenspitzmaus (Crocidura suaveolens) und ihre Beziehung zum lokomotorischen Verhalten , 1987 .
[45] M. Genoud. Activity of Sorex coronatus (Insectivora, Soricidae) in the field , 1983 .
[46] P. Vogel,et al. Rythme journalier d’activité chez quelques Crocidurinae africains et européens (Soricidae, Insectivora) , 1981, Revue d'Écologie (La Terre et La Vie).
[47] P. Vogel,et al. The activity of Crocidura russula (Insectivora, Soricidae) in the field and in captivity , 1981 .
[48] G. Grün,et al. Ultrastructure of the retina in the shrew (Insectivora: Soricidae) , 1979 .
[49] J. Eisenberg,et al. Madagascan Insectivora. (Book Reviews: The Tenrecs. A Study in Mammalian Behavior and Evolution) , 1970 .