Analysis and design of polynomial control systems using dissipation inequalities and sum of squares

Polynomial control systems are control systems where the control system description is given in terms of polynomial nonlinearities. One encounters this class of control systems in a wide range of applications. In particular, in process control and systems biology, many control problems can be modeled as, transformed into, or approximated by polynomial control systems. The purpose of this paper is to give an introduction to and an overview over analysis and design of polynomial control systems using dissipation inequalities. Recent results for rather classical analysis problems, like in stability analysis, are presented as well as new results in emerging design problems, like synchronization. In particular, the analysis of the minimum phase behavior, the stability analysis of differential-algebraic systems with higher index, and the design of synchronizing feedbacks is carried out using dissipation inequalities. To ensure practical applicability, semidefinite programming and the sum of squares decomposition is used, to solve the obtained analysis and design dissipation inequalities in a numerically reliable and efficient way.

[1]  B. Reznick,et al.  Sums of squares of real polynomials , 1995 .

[2]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[3]  Olga Taussky-Todd SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .

[4]  P Varona,et al.  Synchronous behavior of two coupled electronic neurons. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  B. Reznick Some concrete aspects of Hilbert's 17th Problem , 2000 .

[6]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[7]  Frank Allgöwer,et al.  Computer-Aided stability analysis of differential-algebraic equations , 2004 .

[8]  Hamadi Jerbi,et al.  Asymptotic stabilizability of homogeneous polynomial systems of odd degree , 2003, Syst. Control. Lett..

[9]  P. Kokotovic,et al.  The peaking phenomenon and the global stabilization of nonlinear systems , 1991 .

[10]  Toshiyuki Ohtsuka System immersion into a locally observable polynomial-in-the-state representation , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[11]  J. Doyle,et al.  Optimization-based methods for nonlinear and hybrid systems verification , 2005 .

[12]  Alexander N. Pisarchik,et al.  Control of multistability in a directly modulated diode laser , 2002 .

[13]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[14]  Tingshu Hu,et al.  A Lyapunov approach to frequency analysis , 2004, Proceedings of the 2004 American Control Conference.

[15]  Frank Allgöwer,et al.  Stability analysis of constrained control systems: An alternative approach , 2007, Syst. Control. Lett..

[16]  Dirk Aey Els Stabilization of a class of nonlinear systems by a smooth feedback control , 1985 .

[17]  Eduardo Sontag On the Observability of Polynomial Systems, I: Finite-Time Problems , 1979 .

[18]  A. Papachristodoulou Scalable analysis of nonlinear systems using convex optimization , 2005 .

[19]  F. Allgower,et al.  Polynomial Feedback and Observer Design using Nonquadratic Lyapunov Functions , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[20]  A. Garulli,et al.  Positive Polynomials in Control , 2005 .

[21]  Tamer Basar,et al.  Relations Between Attenuation and Phase in Feedback Amplifier Design , 2001 .

[22]  F. Allgower,et al.  Minimum-phase property of nonlinear systems in terms of a dissipation inequality , 2004, Proceedings of the 2004 American Control Conference.

[23]  H. W. Bode Relations between attenuation and phase in feedback amplifier design , 1940 .

[24]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[25]  I. Mareels,et al.  Dead beat controllability of polynomial systems: symbolic computation approaches , 1998, IEEE Trans. Autom. Control..

[26]  David Q. Mayne,et al.  Feedback limitations in nonlinear systems: from Bode integrals to cheap control , 1999, IEEE Trans. Autom. Control..

[27]  Winfried Stefan Lohmiller,et al.  Contraction analysis of nonlinear systems , 1999 .

[28]  R. Cerny,et al.  A computational model of pulsed-laser irradiation of hydrogenated amorphous silicon with phase changes , 1996 .

[29]  Charles N. Delzell,et al.  Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra , 2001 .

[30]  J. Baillieul Controllability and observability of polynomial dynamical systems , 1981 .

[31]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[32]  Z. Jarvis-Wloszek,et al.  Lyapunov Based Analysis and Controller Synthesis for Polynomial Systems using Sum-of-Squares Optimization , 2003 .

[33]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[34]  B. Anderson,et al.  Output feedback stabilization and related problems-solution via decision methods , 1975 .

[35]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[36]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[37]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[38]  F. Allgower,et al.  A duality-based LPV approach to polynomial state feedback design , 2005, Proceedings of the 2005, American Control Conference, 2005..

[39]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[40]  B. Sturmfels SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[41]  Robin J. Evans,et al.  Minimum phase properties for input nonaffine nonlinear systems , 1999, IEEE Trans. Autom. Control..

[42]  Karl J. Åström,et al.  Limitations on control system performance , 1997, 1997 European Control Conference (ECC).

[43]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[44]  V. Powers,et al.  An algorithm for sums of squares of real polynomials , 1998 .

[45]  M. H. Wright The interior-point revolution in optimization: History, recent developments, and lasting consequences , 2004 .

[46]  Frank Allgöwer,et al.  Model Predictive Control for Discrete Time Polynomial Control Systems: A Convex Approach , 2004 .

[47]  Pablo A. Parrilo,et al.  Semidefinite Programming Relaxations and Algebraic Optimization in Control , 2003, Eur. J. Control.

[48]  Murat Arcak,et al.  Constructive nonlinear control: a historical perspective , 2001, Autom..

[49]  B. Tibken Estimation of the domain of attraction for polynomial systems via LMIs , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[50]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[51]  Pablo A. Parrilo,et al.  Nonlinear control synthesis by convex optimization , 2004, IEEE Transactions on Automatic Control.

[52]  Daniel Liberzon,et al.  Output-input stability and minimum-phase nonlinear systems , 2002, IEEE Trans. Autom. Control..

[53]  Frank Allgöwer,et al.  Passivity-based Feedback Design for Polynomial Control Systems (Passivitätsbasierter Reglerentwurf für polynomiale Systeme) , 2005, Autom..

[54]  Eduardo Sontag,et al.  On discrete-time polynomial systems , 1976 .

[55]  Eduardo D. Sontag,et al.  State-estimators for Chemical Reaction Networks of Feinberg-Horn-Jackson Zero Deficiency Type , 2002, Eur. J. Control.

[56]  A. T. Fuller,et al.  Relay control systems optimized for various performance criteria , 1960 .

[57]  A. Gabrielov Multiplicities of zeroes of polynomials on trajectories of polynomial vector fields and bounds on degree of nonholonomy , 1995 .

[58]  A. Isidori Nonlinear Control Systems , 1985 .

[59]  Hanke On Asymptotics in Case of Dae’s , 2007 .

[60]  W. Dayawansa,et al.  Global stabilization by output feedback: examples and counterexamples , 1994 .

[61]  Shyh-Leh Chen,et al.  Exact linearization of a voltage-controlled 3-pole active magnetic bearing system , 2002, IEEE Trans. Control. Syst. Technol..

[62]  Hal Schenck,et al.  Computational Algebraic Geometry , 2003 .

[63]  Yosef Yomdin,et al.  Semialgebraic geometry of polynomial control problems , 1993 .

[64]  D. Aeyels Stabilization of a class of nonlinear systems by a smooth feedback control , 1985 .

[65]  Graziano Chesi Estimating the domain of attraction: a light LMI technique for a class of polynomial systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[66]  Jason L. Speyer,et al.  A second variational theory for optimal periodic processes , 1984 .

[67]  P. C. Müller,et al.  Stability and optimal control of nonlinear descriptor systems: a survey , 1998 .

[68]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[69]  Eduardo Sontag,et al.  Algebraic differential equations and rational control systems , 1992 .

[70]  B. Tibken,et al.  Estimation of the domain of attraction for polynomial systems , 2005, The Fourth International Workshop on Multidimensional Systems, 2005. NDS 2005..

[71]  A. Papachristodoulou,et al.  Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[72]  Rodolphe Sepulchre,et al.  Global analysis of limit cycles in networks of oscillators , 2004 .

[73]  Sergei Yakovenko,et al.  Trajectories of polynomial vector fields and ascending chains of polynomial ideals , 1999 .