Pathway‐based personalized analysis of breast cancer expression data

Most analyses of high throughput cancer data represent tumors by “atomistic” single‐gene properties. Pathifier, a recently introduced method, characterizes a tumor in terms of “coarse grained” pathway‐based variables.

[1]  A. Nobel,et al.  Supervised risk predictor of breast cancer based on intrinsic subtypes. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  R. Tibshirani,et al.  Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[4]  A. van de Stolpe,et al.  Knowledge-based computational models , 2014, Oncotarget.

[5]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[6]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[7]  Lana X. Garmire,et al.  A Novel Model to Combine Clinical and Pathway-Based Transcriptomic Information for the Prognosis Prediction of Breast Cancer , 2014, PLoS Comput. Biol..

[8]  S. Taylor,et al.  Dynamics of cAMP-dependent protein kinase. , 2001, Chemical reviews.

[9]  Axel Benner,et al.  Effects of infiltrating lymphocytes and estrogen receptor on gene expression and prognosis in breast cancer , 2009, Breast Cancer Research and Treatment.

[10]  F M Blows,et al.  Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. , 2014, Annals of oncology : official journal of the European Society for Medical Oncology.

[11]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[12]  John Quackenbush,et al.  A three-gene model to robustly identify breast cancer molecular subtypes. , 2012, Journal of the National Cancer Institute.

[13]  David Haussler,et al.  Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM , 2010, Bioinform..

[14]  F. Markowetz,et al.  The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups , 2012, Nature.

[15]  K. Nephew,et al.  EGFR signaling in breast cancer: bad to the bone. , 2010, Seminars in cell & developmental biology.

[16]  J. Corbin,et al.  Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. , 2011, Physiological reviews.

[17]  A. Jemal,et al.  Breast Cancer Statistics , 2013 .

[18]  T. Wieland,et al.  Constitutive activation of PKA catalytic subunit in adrenal Cushing's syndrome. , 2014, The New England journal of medicine.

[19]  Ahmedin Jemal,et al.  Breast cancer statistics, 2011 , 2011, CA: a cancer journal for clinicians.

[20]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[21]  Stefan Michiels,et al.  Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  I. Dikic,et al.  Cbl–CIN85–endophilin complex mediates ligand-induced downregulation of EGF receptors , 2002, Nature.

[23]  E. Mittendorf,et al.  High Expression of Lymphocyte-Associated Genes in Node-Negative HER2+ Breast Cancers Correlates with Lower Recurrence Rates , 2008 .

[24]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[25]  K. Nishio,et al.  Integrated analysis of whole genome exon array and array‐comparative genomic hybridization in gastric and colorectal cancer cells , 2012, Cancer science.

[26]  T. Hastie,et al.  Principal Curves , 2007 .

[27]  Michal Sheffer,et al.  Pathway-based personalized analysis of cancer , 2013, Proceedings of the National Academy of Sciences.

[28]  Kenneth H. Buetow,et al.  PID: the Pathway Interaction Database , 2008, Nucleic Acids Res..

[29]  Matthias Mann,et al.  Proteomic portrait of human breast cancer progression identifies novel prognostic markers. , 2012, Cancer research.

[30]  Susumu Goto,et al.  KEGG for representation and analysis of molecular networks involving diseases and drugs , 2009, Nucleic Acids Res..

[31]  Erhan Bilal,et al.  Improving Breast Cancer Survival Analysis through Competition-Based Multidimensional Modeling , 2013, PLoS Comput. Biol..

[32]  V. Beneš,et al.  The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. , 2009, Clinical chemistry.

[33]  Trey Ideker,et al.  Boosting Signal-to-Noise in Complex Biology: Prior Knowledge Is Power , 2011, Cell.

[34]  I. Ellis,et al.  An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer , 2007, Genome Biology.

[35]  J. Haerting,et al.  Gene-expression signatures in breast cancer. , 2003, The New England journal of medicine.

[36]  J. Foekens,et al.  Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer , 2005, The Lancet.

[37]  A. van de Stolpe,et al.  Selection of personalized patient therapy through the use of knowledge-based computational models that identify tumor-driving signal transduction pathways , 2014 .

[38]  C. Stratakis,et al.  PRKACB and Carney complex. , 2014, The New England journal of medicine.

[39]  H. Hollema,et al.  Microarray methods to identify factors determining breast cancer progression: potentials, limitations, and challenges. , 2009, Critical reviews in oncology/hematology.

[40]  Dan Tsafrir,et al.  Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices , 2005, Bioinform..

[41]  C. DeLisi,et al.  Data Perturbation Independent Diagnosis and Validation of Breast Cancer Subtypes Using Clustering and Patterns , 2006, Cancer informatics.

[42]  Kornelia Polyak,et al.  Heterogeneity in breast cancer. , 2011, The Journal of clinical investigation.

[43]  Gabriela Alexe,et al.  High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. , 2007, Cancer research.

[44]  Achim Rody,et al.  T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers , 2009, Breast Cancer Research.