Spatial representation and reasoning in RCC-8 with Boolean region terms

We extend the expressive power of the region connection calculus RCC-8 by allowing to apply the 8 binary relations of RCC-8 not only to atomic regions but also to Boolean combinations of them. It is shown that the statisfiability problem for the extended language in arbitrary topological spaces is still in NP; however, it becomes PSPACE-complete if only the Euclidean spaces Rn , n > 0, are regarded as possible interpretations. In particular, in contrast to pure RCC-8, the new language is capable of distinguishing between connected and non-connected topological spaces.

[1]  M. Egenhofer,et al.  Point-Set Topological Spatial Relations , 2001 .

[2]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[3]  Brandon Bennett,et al.  Spatial Reasoning with Propositional Logics , 1994, KR.

[4]  Daniel R. Montello,et al.  Spatial Information Theory A Theoretical Basis for GIS , 1995, Lecture Notes in Computer Science.

[5]  Brandon Bennett,et al.  Modal Logics for Qualitative Spatial Reasoning , 1996, Log. J. IGPL.

[6]  Bernhard Nebel,et al.  Spatial Reasoning with Topological Information , 1998, Spatial Cognition.

[7]  Anthony G. Cohn,et al.  A Logical Approach to Incorporating Qualitative Spatial Reasoning into GIS (Extended Abstract) , 1997, COSIT.

[8]  Peter Jonsson,et al.  A Complete Classification of Tractability in RCC-5 , 1997, J. Artif. Intell. Res..

[9]  Valentin Goranko,et al.  Using the Universal Modality: Gains and Questions , 1992, J. Log. Comput..

[10]  David M. Mark,et al.  Naive Geography , 1995, COSIT.

[11]  Jochen Renz,et al.  On the Complexity of Qualitative Spatial Reasoning : A Maximal Tractable Fragment of RCC-8 , 1997 .

[12]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[13]  Jochen Renz,et al.  Maximal Tractable Fragments of the Region Connection Calculus: A Complete Analysis , 1999, IJCAI.

[14]  Volker Haarslev,et al.  A Description Logic with Concrete Domains and a Role-forming Predicate Operator , 1999, J. Log. Comput..

[15]  Werner Nutt On the Translation of Qualitative Spatial Reasoning Problems into Modal Logics , 1999, KI.

[16]  Jochen Renz,et al.  A Canonical Model of the Region Connection Calculus , 1997, J. Appl. Non Class. Logics.

[17]  Bernhard Nebel,et al.  On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus , 1999, Artif. Intell..