Interfacial engineering of CuSCN-based perovskite solar cells via PMMA interlayer toward enhanced efficiency and stability

We report a new interfacial engineering strategy to improve the photovoltaic performance of CuSCN-based perovskite solar cells.

[1]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[2]  H. Ade,et al.  Reducing Energy Disorder of Hole Transport Layer by Charge Transfer Complex for High Performance p–i–n Perovskite Solar Cells , 2021, Advanced materials.

[3]  N. Park,et al.  Efficient surface passivation of perovskite films by a post-treatment method with a minimal dose , 2021 .

[4]  Wenwu Wang,et al.  Enhanced performance of ZnO nanorod array/CuSCN ultraviolet photodetectors with functionalized graphene layers , 2021, RSC advances.

[5]  J. Jung,et al.  Enhanced moisture stability of mixed cation perovskite solar cells enabled by a room-temperature solution-processed organic-inorganic bilayer hole transport layer , 2020 .

[6]  Xiaodang Zhang,et al.  Performance Promotion through Dual-Interface Engineering of CuSCN Layers in Planar Perovskite Solar Cells , 2020 .

[7]  A. Shalan,et al.  Improvement of the interfacial contact between zinc oxide and a mixed cation perovskite using carbon nanotubes for ambient-air-processed perovskite solar cells , 2020 .

[8]  A. Rostami,et al.  p-Phenylenediaminium iodide capping agent enabled self-healing perovskite solar cell , 2020, Scientific Reports.

[9]  Wei Lin Leong,et al.  Novel amphiphilic corannulene additive for moisture-resistant perovskite solar cells. , 2020, Chemical communications.

[10]  T. Luo,et al.  Printable CsPbI3 Perovskite Solar Cells with PCE of 19% via an Additive Strategy , 2020, Advanced materials.

[11]  Jinhyun Kim,et al.  A Cu2O–CuSCN Nanocomposite as a Hole-Transport Material of Perovskite Solar Cells for Enhanced Carrier Transport and Suppressed Interfacial Degradation , 2020 .

[12]  Ruixin Ma,et al.  Interfacial modification of various alkali metal cations in perovskite solar cells and their influence on photovoltaic performance , 2020 .

[13]  B. Rezaei,et al.  Polymer/Inorganic Hole Transport Layer for Low-Temperature-Processed Perovskite Solar Cells , 2020, Energies.

[14]  Peng Zhang,et al.  High Electron Affinity Enables Fast Hole Extraction for Efficient Flexible Inverted Perovskite Solar Cells , 2020, Advanced Energy Materials.

[15]  Swati Singh,et al.  Graphene interfacial diffusion barrier between CuSCN and Au layers for stable perovskite solar cells , 2020 .

[16]  Jinhyun Kim,et al.  Interfacial Modification and Defect Passivation by Crosslinking Interlayer for Efficient and Stable CuSCN-Based Perovskite Solar Cell. , 2019, ACS applied materials & interfaces.

[17]  Jinhyun Kim,et al.  Aminosilane‐Modified CuGaO2 Nanoparticles Incorporated with CuSCN as a Hole‐Transport Layer for Efficient and Stable Perovskite Solar Cells , 2019, Advanced Materials Interfaces.

[18]  R. Luque,et al.  Highly efficient thermally stable perovskite solar cells via Cs:NiO /CuSCN double-inorganic hole extraction layer interface engineering , 2019, Materials Today.

[19]  Fei Wu,et al.  Alkyl chain engineering on tetraphenylethylene-diketopyrrolopyrrole-based interfacial materials for efficient inverted perovskite solar cells , 2019, Organic Electronics.

[20]  S. Mali,et al.  A ‘Smart-Bottle’ humidifier-assisted air-processed CuSCN inorganic hole extraction layer towards highly-efficient, large-area and thermally-stable perovskite solar cells , 2019, Journal of Materials Chemistry A.

[21]  W. Lee,et al.  Enhancement of open circuit voltage for CuSCN-based perovskite solar cells by controlling the perovskite/CuSCN interface with functional molecules , 2019, Journal of Materials Chemistry A.

[22]  Yongzhen Wu,et al.  Efficient Defect Passivation for Perovskite Solar Cells by Controlling the Electron Density Distribution of Donor‐π‐Acceptor Molecules , 2019, Advanced Energy Materials.

[23]  Honglin Chen,et al.  Enhanced efficiency and stability of fully air-processed TiO2 nanorods array based perovskite solar cell using commercial available CuSCN and carbon , 2018, Solar Energy.

[24]  T. Noda,et al.  Low temperature processed inverted planar perovskite solar cells by r-GO/CuSCN hole-transport bilayer with improved stability , 2018, Solar Energy.

[25]  Y. Hao,et al.  High‐Performance Planar Perovskite Solar Cells Using Low Temperature, Solution–Combustion‐Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20% , 2018 .

[26]  Yongbo Yuan,et al.  Ion‐Migration Inhibition by the Cation–π Interaction in Perovskite Materials for Efficient and Stable Perovskite Solar Cells , 2018, Advanced materials.

[27]  Lin Hu,et al.  Suppressing generation of iodine impurity via an amidine additive in perovskite solar cells. , 2018, Chemical communications.

[28]  R. Munir,et al.  Stable High‐Performance Perovskite Solar Cells via Grain Boundary Passivation , 2018, Advanced materials.

[29]  N. Park,et al.  Simultaneous Improvement of Photovoltaic Performance and Stability by In Situ Formation of 2D Perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN Interface , 2018 .

[30]  V. Saxena,et al.  Inorganic based hole transport materials for perovskite solar cells , 2018, Journal of Materials Science: Materials in Electronics.

[31]  Y. Murata,et al.  Roles of Polymer Layer in Enhanced Photovoltaic Performance of Perovskite Solar Cells via Interface Engineering , 2018 .

[32]  Sujuan Wu,et al.  Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers , 2018 .

[33]  Neha Arora,et al.  Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% , 2017, Science.

[34]  Dane W. deQuilettes,et al.  Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells , 2017, Science Advances.

[35]  A. Jen,et al.  Tailor-Making Low-Cost Spiro[fluorene-9,9′-xanthene]-Based 3D Oligomers for Perovskite Solar Cells , 2017 .

[36]  Thomas M. Brown,et al.  Advances in hole transport materials engineering for stable and efficient perovskite solar cells , 2017 .

[37]  W. Lee,et al.  Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability , 2017 .

[38]  U. Bach,et al.  A facile deposition method for CuSCN: Exploring the influence of CuSCN on J-V hysteresis in planar perovskite solar cells , 2017 .

[39]  Jinsong Huang,et al.  π‐Conjugated Lewis Base: Efficient Trap‐Passivation and Charge‐Extraction for Hybrid Perovskite Solar Cells , 2017, Advanced materials.

[40]  H. Misawa,et al.  Cobalt Oxide (CoOx) as an Efficient Hole-Extracting Layer for High-Performance Inverted Planar Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[41]  Sandeep Kumar Pathak,et al.  Identification and Mitigation of a Critical Interfacial Instability in Perovskite Solar Cells Employing Copper Thiocyanate Hole‐Transporter , 2016 .

[42]  Q. Gong,et al.  Charge Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells Based on Interface Engineering , 2016, 2016 Asia Communications and Photonics Conference (ACP).

[43]  Lixin Xiao,et al.  Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells. , 2016, Nanoscale.

[44]  Chunhui Huang,et al.  A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3−xClx solar cells by an effective Cl doping method , 2016 .

[45]  Kai Zhu,et al.  Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MoOx/Al for Hole Collection , 2016 .

[46]  Peng Gao,et al.  A molecularly engineered hole-transporting material for efficient perovskite solar cells , 2016, Nature Energy.

[47]  Wei Zhang,et al.  Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells , 2015, Nature Communications.

[48]  Liming Ding,et al.  Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. , 2015, Small.

[49]  Jun Mei,et al.  Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell. , 2015, ACS applied materials & interfaces.

[50]  R. Munir,et al.  Solution-processed inorganic copper( i ) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells , 2015 .

[51]  A. Jen,et al.  High‐Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Hole‐Transporting Material , 2015 .

[52]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[53]  Xudong Yang,et al.  A dopant-free hole-transporting material for efficient and stable perovskite solar cells , 2014 .

[54]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[55]  P. Lund,et al.  Carbon-double-bond-free printed solar cells from TiO₂/CH₃NH₃PbI₃/CuSCN/Au: structural control and photoaging effects. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[56]  Jean-Pierre Wolf,et al.  Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. , 2014, Journal of the American Chemical Society.

[57]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[58]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[59]  Gary Hodes,et al.  Perovskite-Based Solar Cells , 2013, Science.

[60]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[61]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[62]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[63]  T. Varga,et al.  Electronic and Defect Structures of CuSCN , 2010 .

[64]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[65]  Y. Hahn,et al.  Highly stable perovskite solar cells based on perovskite/NiO-graphene composites and NiO interface with 25.9 mA/cm2 photocurrent density and 20.8% efficiency , 2021 .

[66]  Jun Wang,et al.  An ionic compensation strategy for high-performance mesoporous perovskite solar cells: healing defects with tri-iodide ions in a solvent vapor annealing process , 2019, Journal of Materials Chemistry A.