Volatile metabolic profiling for discrimination of potato tubers inoculated with dry and soft rot pathogens

Volatile metabolites from ‘Russet Burbank’ potatoes inoculated withErwinia carotovora ssp.carotovora (ECC),Erwinia carotovora ssp.atroseptica (ECA), andFusarium sambucinum (FSA) were analyzed by sampling the headspace at 3 and 6 days after inoculation and then using a gas chromatograph/mass spectrometer (GC/MS) to identify the compounds. Non-wounded noninoculated and wounded non-inoculated tubers served as checks. Compounds with an abundance of ≥105 and with frequency of ≥3 out of 20 replicates (10 replicates × 2 incubation times) were subjected to further analysis. A total of 81 volatile metabolites were detected, of which 58 were specific to one or common to a few, but not to all inoculations/diseases. Acetic acid ethenyl ester was unique to ECA, while cyclohexene, diazene, and methoxy-(1,1-dimethyl-2-dihydroxy-ethyl)-amine were unique to ECC, and 2,5-norbornadiene and styrene were unique to FSA. Several metabolites were common only to tubers inoculated with ECC and ECA and were not detected in fungus-inoculated or in control tubers. High abundances of acetone and butane were detected in ECC- and ECA-inoculated tubers, respectively. The possible use of differences in volatile metabolic profiles to discriminate diseases of potato tubers in storage is discussed.ResumenLos metabolites volátiles de la papa Russet Burbank, inoculados conErwinia carotovora ssp.carotovora (ECC),Erwinia carotovora ssp.atroseptica (ECA)y Fusarium sambucinum (FSA) se analizaron por muestreo del espacio circundante 3 y 6 días después de la inoculación. Para identificar los compuestos se utilizó un cromatógrafo de gas/ espectómetro de masa (GC/MS). Sirvieron como testigos, tubérculos sin herir sin inocular y tubérculos heridos sin inocular. Los compuestos en cantidades ≥105 y con una frecuencia ≥3 de 20 repeticiones (10 repeticiones × 2 periodos de incubación), fueron sujetos a análisis posteriores. Se detectó un total de 81 metabolites volátiles, de los cuales 58 fueron especificos a una o comunes a unas pocas pero no a todas las inoculaciones/enfermedades. El ácido acético etenil ester fue exclusivo de ECA, mientras que el ciclohexeno, diazeno y metoxi-(1,1 dimetil-2-dihidroxi-etil)-amina fueron exclusivos de ECC, y el 2,5-norbordarieno y el estireno fueron exclusivos de FSA. Algunos metabolites fueron comunes solamente en los tubérculos inoculados con ECC y ECA y no se detectaron en los inoculados con el hongo o en los testigos. Abundante acetona y butano se detectó en los tubérculos inoculados con ECC y ECA respectivamente. Se discute el posible uso de las diferencias de los perfiles volatiles metabólicos para distinguir las enfermedades en los tubérculos almacenados.

[1]  W. J. Hooker Compendium of potato diseases. , 1981 .

[2]  M. K. Pritchard,et al.  Monitoring of volatiles: A technique for detection of soft rot (Erwinia carotovora) in potato tubers , 1984 .

[3]  M. K. Pritchard,et al.  Production of volatile metabolites in potatoes infected by Erwinia carotovora var. carotovora and E. carotovora var. atroseptica , 1985 .

[4]  Cl Wilson,et al.  BIOLOGICAL CONTROL OF POSTHARVEST DISEASES OF FRUITS AND VEGETABLES: AN EMERGING TECHNOLOGY* , 1989 .

[5]  G. Raghavan,et al.  VOLATILE MONITORING TECHNIQUE FOR DISEASE DETECTION IN STORED POTATOES , 1990 .

[6]  John H. Loughrin,et al.  Metabolism of Natural Volatile Compounds by Strawberry Fruit , 1996 .

[7]  P. Toivonen Non-ethylene, non-respiratory volatiles in harvested fruits and vegetables: their occurrence, biological activity and control , 1997 .

[8]  Ratcliffe,et al.  Identification of volatiles generated by potato tubers (Solanum tuberosum CV: Maris Piper) infected by Erwinia carotovora, Bacillus polymyxa and Arthrobacter sp. , 1999 .

[9]  R T Marsili,et al.  SPME-MS-MVA as an electronic nose for the study of off-flavors in milk. , 1999, Journal of agricultural and food chemistry.

[10]  Yvan Gariepy,et al.  AN APPARATUS TO SAMPLE VOLATILES IN A COMMERCIAL POTATO STORAGE FACILITY , 1999 .

[11]  Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. , 2001, The Plant cell.

[12]  B. Costello,et al.  Gas chromatography-mass spectrometry analyses of volatile organic compounds from potato tubers inoculated with Phytophthora infestans or Fusarium coeruleum , 2001 .

[13]  G.S.V. Raghavan,et al.  Changes in volatile production during an infection of potatoes by Erwinia carotovora , 2001 .

[14]  Ute Roessner,et al.  Metabolic Profiling Allows Comprehensive Phenotyping of Genetically or Environmentally Modified Plant Systems , 2001, Plant Cell.

[15]  Walter R. Stevenson,et al.  Compendium of potato diseases , 2001 .

[16]  A. Kushalappa,et al.  Volatile Fingerprinting (SPME-GC-FID) to Detect and Discriminate Diseases of Potato Tubers. , 2002, Plant disease.

[17]  A. Kushalappa,et al.  Response surface models to predict potato tuber infection by Fusarium sambucinum from duration of wetness and temperature, and dry rot lesion expansion from storage time and temperature. , 2002, International journal of food microbiology.

[18]  Liangjiang Wang,et al.  The phenylpropanoid pathway and plant defence-a genomics perspective. , 2002, Molecular plant pathology.

[19]  O. Fiehn Metabolomics – the link between genotypes and phenotypes , 2004, Plant Molecular Biology.

[20]  A. Kushalappa,et al.  Effect of wet incubation time and temperature on infection, and of storage time and temperature on soft rot lesion expansion in potatoes inoculated withErwinia carotovora ssp.Carotovora , 2001, Potato Research.

[21]  Jerry L. Varns,et al.  Detection of disease in stored potatoes by volatile monitoring , 1979, American Potato Journal.

[22]  M. K. Pritchard,et al.  Volatile monitoring as a technique for differentiating betweenE. carotovora andC. sepedonicum infections in stored potatoes , 1984, American Potato Journal.