Shape-morphing mechanical metamaterials

Small-scale cut and fold patterns imposed on sheet material enable its morphing into three-dimensional shapes. This manufacturing paradigm has been receiving much attention in recent years and poses challenges in both fabrication and computation. It is intimately connected with the interpretation of patterned sheets as mechanical metamaterials, typically of negative Poisson ratio. We here present an affirmative solution to a fundamental geometric question, namely the targeted programming of a shape morph. We use optimization to compute kirigami patterns that realize a morph between arbitrary shapes, in particular between a flat sheet and a surface in space. This so-called inverse problem for kirigami cut and fold patterns is solved by drawing on a differential-geometric interpretation of the morph and on progress in geometric computing.

[1]  Michael Tanis,et al.  Additive lattice kirigami , 2016, Science Advances.

[2]  Ronald S. Fearing,et al.  Pop-up mars rover with textile-enhanced rigid-flex PCB body , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[3]  Jie Yin,et al.  Programmable active kirigami metasheets with more freedom of actuation , 2019, Proceedings of the National Academy of Sciences.

[4]  Shi-Min Hu,et al.  Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes , 2006, International Journal of Computer Vision.

[5]  Fei Wang,et al.  Patterning Curved Three-Dimensional Structures With Programmable Kirigami Designs , 2017 .

[6]  Tomohiro Tachi,et al.  Programming curvature using origami tessellations. , 2016, Nature materials.

[7]  Levi H. Dudte,et al.  Geometric mechanics of periodic pleated origami. , 2012, Physical review letters.

[8]  Helmut Pottmann,et al.  Checkerboard patterns with black rectangles , 2019, ACM Trans. Graph..

[9]  Keenan Crane,et al.  Beyond developable , 2016, ACM Trans. Graph..

[10]  Damiano Pasini,et al.  Bistable Auxetic Mechanical Metamaterials Inspired by Ancient Geometric Motifs , 2016, 1612.05988.

[11]  Tomohiro Tachi Generalization of rigid foldable quadrilateral mesh origami , 2009 .

[12]  Christian D. Santangelo,et al.  Extreme Mechanics: Self-Folding Origami , 2017 .

[13]  Hans Nørgaard Hansen,et al.  Process chains for the manufacturing of molded interconnect devices , 2009 .

[14]  A. Bobenko,et al.  Discrete Differential Geometry: Integrable Structure , 2008 .

[15]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[16]  Amir A. Zadpoor,et al.  From flat sheets to curved geometries: Origami and kirigami approaches , 2017 .

[17]  A. Korsunsky,et al.  Highly stretchable two-dimensional auxetic metamaterial sheets fabricated via direct-laser cutting , 2020, International Journal of Mechanical Sciences.

[18]  Daphne Attard,et al.  Auxetic behaviour from connected different-sized squares and rectangles , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  August G. Domel,et al.  Programmable Hierarchical Kirigami , 2019, Advanced Functional Materials.

[20]  Helmut Pottmann,et al.  Quad-mesh based isometric mappings and developable surfaces , 2020, ACM Trans. Graph..

[21]  Victor Ceballos Inza,et al.  Using isometries for computational design and fabrication , 2021, ACM Trans. Graph..

[22]  Helmut Pottmann,et al.  Freeform quad-based kirigami , 2020, ACM Trans. Graph..

[23]  K. Bertoldi,et al.  Kirigami‐Inspired Inflatables with Programmable Shapes , 2020, Advanced materials.

[24]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[25]  Tim Hoffmann,et al.  On the Integrability of Infinitesimal and Finite Deformations of Polyhedral Surfaces , 2008 .

[26]  Gary P. T. Choi,et al.  Programming shape using kirigami tessellations , 2018, Nature Materials.

[27]  David Rubin,et al.  Introduction to Continuum Mechanics , 2009 .

[28]  Joseph N. Grima,et al.  Auxetic behaviour from rotating rigid units , 2005 .

[29]  Zhong You,et al.  Programmable stiffness and shape modulation in origami materials: Emergence of a distant actuation feature , 2020, Applied Materials Today.

[30]  P. Laskowski,et al.  The Traditional and Modern Look at Tissot's Indicatrix , 1989 .

[31]  Damiano Pasini,et al.  Snapping mechanical metamaterials under tension. , 2015, Advanced materials.

[32]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems , 1999 .

[33]  D. Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH 2009.

[34]  K. Evans Auxetic polymers: a new range of materials , 1991 .

[35]  Joseph N. Grima,et al.  Auxetic behavior from rotating squares , 2000 .

[36]  Keenan Crane,et al.  Rapid deployment of curved surfaces via programmable auxetics , 2018, ACM Trans. Graph..

[37]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[38]  E. Demaine,et al.  Self-folding with shape memory composites† , 2013 .

[39]  Basile Audoly,et al.  Shape-morphing architected sheets with non-periodic cut patterns. , 2018, Soft matter.

[40]  D. Sussman,et al.  Making the cut: lattice kirigami rules. , 2014, Physical review letters.