Solving Large-Scale Nonsymmetric Algebraic Riccati Equations by Doubling

We consider the solution of the large-scale nonsymmetric algebraic Riccati equation XCX − XD − AX + B =0 , withM ≡ (D, −C; −B, A) ∈ R(n1+n2)×(n1+n2) being a nonsingular M-matrix. In addition, A and D are sparselike, with the products A −1 u, A −� u, D −1 v ,a ndD −� v computable in O(n )c omplexity (withn =m ax{n1 ,n 2}), for some vectors u and v ,a ndB, C are low ranked. The structure-preserving doubling algorithms (SDA) by Guo, Lin, and Xu (Numer. Math., 103 (2006), pp. 392-412) is adapted, with the appropriate applications of the Sherman-Morrison- Woodbury formula and the sparse-plus-low-rank representations of various iterates. The resulting large-scale doubling algorithm has an O(n) computational complexity and memory requirement per iteration and converges essentially quadratically. A detailed error analysis, on the effects of truncation of iterates with an explicit forward error bound for the approximate solution from the SDA, and some numerical results will be presented.

[1]  W. Haddad,et al.  LQG control with an H∞ performance bound: a riccati equation approach , 1988, 1988 American Control Conference.

[2]  Tiexiang Li,et al.  Solution of a nonsymmetric algebraic Riccati equation from a one-dimensional multistate transport model , 2011 .

[3]  Yimin Wei,et al.  A modified Newton method for solving non-symmetric algebraic Riccati equations arising in transport theory , 2007 .

[4]  P. Lancaster,et al.  Solutions of the Continuous and Discrete Time Algebraic Riccati Equations: A Review , 1991 .

[5]  Diederich Hinrichsen,et al.  An algorithm for the computation of the structured complex stability radius , 1989, Autom..

[6]  Hung-Yuan Fan,et al.  Structure-Preserving Algorithms for Periodic Discrete-Time Algebraic Riccati Equations , 2004 .

[7]  Chun-Hua Guo,et al.  Convergence Analysis of the Doubling Algorithm for Several Nonlinear Matrix Equations in the Critical Case , 2009, SIAM J. Matrix Anal. Appl..

[8]  Chun-Hua Guo,et al.  Convergence rates of some iterative methods for nonsymmetric algebraic Riccati equations arising in transport theory , 2010 .

[9]  D. Bernstein,et al.  LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .

[10]  Hung-Yuan Fan,et al.  A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations , 2005 .

[11]  Wen-Wei Lin,et al.  A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation , 2006, Numerische Mathematik.

[12]  E. Chu,et al.  PALINDROMIC EIGENVALUE PROBLEMS: A BRIEF SURVEY , 2010 .

[13]  David Williams,et al.  A ‘potential-theoretic’ note on the quadratic Wiener-Hopf equation for Q-matrices , 1982 .

[14]  Ren-Cang Li,et al.  Alternating-directional Doubling Algorithm for M-Matrix Algebraic Riccati Equations , 2012, SIAM J. Matrix Anal. Appl..

[15]  Wen-Wei Lin,et al.  Solving large-scale continuous-time algebraic Riccati equations by doubling , 2013, J. Comput. Appl. Math..

[16]  Bart De Moor,et al.  Total linear least squares and the algebraic Riccati equation , 1992 .

[17]  Chun-Hua Guo,et al.  Nonsymmetric Algebraic Riccati Equations and Wiener-Hopf Factorization for M-Matrices , 2001, SIAM J. Matrix Anal. Appl..

[18]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[19]  Zhong-Zhi Bai,et al.  Fast Iterative Schemes for Nonsymmetric Algebraic Riccati Equations Arising from Transport Theory , 2008, SIAM J. Sci. Comput..

[20]  Bruno Iannazzo,et al.  A Fast Newton's Method for a Nonsymmetric Algebraic Riccati Equation , 2008, SIAM J. Matrix Anal. Appl..

[21]  Tiexiang Li,et al.  Solution of a nonsymmetric algebraic Riccati equation from a two-dimensional transport model , 2011 .

[22]  Volker Mehrmann,et al.  Explicit Solutions for a Riccati Equation from Transport Theory , 2008, SIAM J. Matrix Anal. Appl..

[23]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[24]  R. A. Smith Matrix Equation $XA + BX = C$ , 1968 .

[25]  Wen-Wei Lin,et al.  Convergence Analysis of Structure-Preserving Doubling Algorithms for Riccati-Type Matrix Equations , 2006, SIAM J. Matrix Anal. Appl..

[26]  Khalide Jbilou,et al.  Low rank approximate solutions to large Sylvester matrix equations , 2006, Appl. Math. Comput..

[27]  Chun-Hua Guo,et al.  A new class of nonsymmetric algebraic Riccati equations , 2007 .

[28]  Federico Poloni,et al.  Transforming algebraic Riccati equations into unilateral quadratic matrix equations , 2010, Numerische Mathematik.

[29]  Peter Benner,et al.  On the ADI method for Sylvester equations , 2009, J. Comput. Appl. Math..

[30]  Israel Gohberg,et al.  An inverse spectral problem for rational matrix functions and minimal divisibility , 1987 .

[31]  Nicholas J. Higham,et al.  Iterative Solution of a Nonsymmetric Algebraic Riccati Equation , 2007, SIAM J. Matrix Anal. Appl..

[32]  Lin-Zhang Lu Newton iterations for a non-symmetric algebraic Riccati equation , 2005, Numer. Linear Algebra Appl..

[33]  Chun-Hua Guo,et al.  Analysis and modificaton of Newton's method for algebraic Riccati equations , 1998, Math. Comput..

[34]  Jonq Juang,et al.  Existence of algebraic matrix Riccati equations arising in transport theory , 1995 .