The Sagnac effect: correct and incorrect explanations

Different explanations for the Sagnac effect are discussed. It is shown that this effect is a consequence of the relativistic law of velocity composition and that it can also be explained adequately within the framework of general relativity. When certain restrictions on the rotational velocity are imposed, the Sagnac effect can be attributed to the difference in the time dilation (or phase change) of material particle wave functions in the scalar (or correspondingly vector) gravitational potential of the inertial forces in a rotating reference system for counterpropagating waves. It is also shown that all the nonrelativistic interpretations of the Sagnac effect, which are unfortunately sometimes found in scientific papers, monographs and textbooks, are wrong in principle, even though the results they yield are accurate up to relativistic corrections in some special cases.

[1]  A. Gutsol The Ranque effect , 1997 .

[2]  B. Linet,et al.  Changement de phase dans un champ de gravitation: Possibilité de détection interférentielle , 1976 .

[3]  A. Einstein,et al.  Die Grundlage der allgemeinen Relativitätstheorie , 1916 .

[4]  M. Johnsson,et al.  T violation and microhertz resolution in a ring laser. , 1995, Optics letters.

[5]  S. Olariu,et al.  The quantum effects of electromagnetic fluxes , 1985 .

[6]  M. Berry The Adiabatic Phase and Pancharatnam's Phase for Polarized Light , 1987 .

[7]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  R. Dicke,et al.  Mach's principle and a relativistic theory of gravitation , 1961 .

[9]  Albert A. Michelson,et al.  The Effect of the Earth's Rotation on the Velocity of Light, II. , 1925 .

[10]  Mehring,et al.  Deviation from Berry's adiabatic geometric phase in a 131Xe nuclear gyroscope. , 1994, Physical review letters.

[11]  E. O. Schulz-DuBois Foucault Pendulum Experiment by Kamerlingh Onnes and Degenerate Perturbation Theory , 1970 .

[12]  M. Berry Interpreting the anholonomy of coiled light , 1987, Nature.

[13]  A. Einstein The Foundation of the General Theory of Relativity , 1916 .

[14]  J. J. Sakurai Comments on Quantum Mechanical Interference Due to the Earth's Rotation , 1980 .

[15]  H. Bilger,et al.  Fresnel Drag in a Ring Laser: Measurement of the Dispersive Term , 1972 .

[16]  F. Zernike The convection of light under various circumstances with special reference to Zeeman's experiments , 1947 .

[17]  J. Plebański,et al.  Electromagnetic Waves in Gravitational Fields , 1960 .

[18]  T. Gustavson,et al.  Precision Rotation Measurements with an Atom Interferometer Gyroscope , 1997 .

[19]  M. Player On the dragging of the plane of polarization of light propagating in a rotating medium , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  G. Lianis,et al.  Electromagnetic phenomena in rotating media , 1975 .

[21]  H. Yilmaz New Approach to General Relativity , 1958 .

[22]  H. Yilmaz New approach to relativity and gravitation , 1973 .

[23]  Relativistic contraction and related effects in noninertial frames , 1999, gr-qc/9904078.

[24]  A. Einstein,et al.  Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes , 1911 .

[25]  A. Lunn The Propagation of Light in Rotating Systems , 1922 .

[26]  L. Silberstein The Propagation of Light in Rotating Systems , 1921 .

[27]  A. Ashtekar,et al.  The Sagnac effect in general relativity , 1975 .

[28]  H. Shaw,et al.  An overview of fiber-optic gyroscopes , 1984, Journal of Lightwave Technology.

[29]  G. Nienhuis,et al.  CORRIGENDUM: Sagnac effect as viewed by a co-rotating observer , 1990 .

[30]  N. Balazs Effect of a Gravitational Field, Due to a Rotating Body, on the Plane of Polarization of an Electromagnetic Wave , 1958 .

[31]  J. W. Ryon,et al.  Electromagnetic Radiation in Accelerated Systems , 1969 .

[32]  Franz Harress Die Geschwindigkeit des Lichtes in bewegten Körpern , 1912 .

[33]  E. J. Post Interferometric Path-Length Changes Due to Motion , 1972 .

[34]  David E. Pritchard,et al.  Rotation Sensing with an Atom Interferometer , 1997 .

[35]  George F. Smoot,et al.  Detection of Anisotropy in the Cosmic Blackbody Radiation , 1977 .

[36]  J. Corum Relativistic rotation and the anholonomic object , 1977 .

[37]  M. Trocheris CIV. Electrodynamics in a rotating frame of reference , 1949 .

[38]  T. Shiozawa Phenomenological and electron-theoretical study of the electrodynamics of rotating systems , 1973 .

[39]  A. Einstein Prinzipielles zur allgemeinen Relativitätstheorie , 1918 .

[40]  H. Minkowski Raum und Zeit , 1984 .

[41]  Packard,et al.  Principles of superfluid-helium gyroscopes. , 1992, Physical review. B, Condensed matter.

[42]  Mark D. Semon Experimental verification of an Aharonov-Bohm effect in rotating reference frames , 1982 .

[43]  W. Pauli,et al.  Theory Of Relativity , 1959 .

[44]  H. Arditty,et al.  Sagnac effect in fiber gyroscopes. , 1981, Optics letters.

[45]  H. R. Bilger,et al.  ``Sagnac'' effect: A century of Earth-rotated interferometers , 1994 .

[46]  C. Yang,et al.  Phase shift in a rotating neutron or optical interferometer , 1979 .

[47]  C. V. Heer Resonant frequencies of an electromagnetic cavity in an accelerated system of reference. , 1964 .

[48]  Y. Aharonov,et al.  Quantum aspects of the equivalence principle , 1973 .

[49]  Mashhoon Neutron interferometry in a rotating frame of reference. , 1988, Physical review letters.

[50]  J. Anandan Gravitational and rotational effects in quantum interference , 1977 .

[51]  D. W. Allan,et al.  Around-the-World Relativistic Sagnac Experiment , 1985, Science.

[52]  M. Silverman Effect of the earth's rotation on the optical properties of atoms , 1990 .

[53]  E. Harris The gravitational Aharonov–Bohm effect with photons , 1996 .

[54]  Hehl,et al.  Inertial effects of a Dirac particle. , 1990, Physical review. D, Particles and fields.

[55]  P. Piwnicki,et al.  Optics of nonuniformly moving media , 1999 .

[56]  A. Michelson LXXII. Relative motion of earth and æther , 1904 .

[57]  P. Forder Ring gyroscopes: an application of adiabatic invariance , 1984 .

[58]  M. Krivoruchenko Transitional currents of spin-1/2 particles , 1994 .

[59]  V. Ginzburg,et al.  Once again about the equivalence principle , 1995 .

[60]  S. J. Barnett Gyromagnetic and Electron-Inertia Effects , 1935 .

[61]  Einstein on the firing line , 1972 .

[62]  M. Laue Zum Versuch von F. Harreß , 1920 .

[63]  Theory and Experiment in Gravitational Physics , 1982 .

[64]  A. Michelson,et al.  The relative motion of the Earth and of the luminiferous ether , 1881, American Journal of Science.

[65]  D. Dieks,et al.  Relativistic aspects of nonrelativistic quantum mechanics , 1990 .

[66]  V. Vali,et al.  Fresnel-Fizeau effect in a rotating optical fiber ring interferometer. , 1977, Applied optics.

[67]  M. S. Zubairy,et al.  Proposed optical test of metric gravitation theories , 1981 .

[68]  J. Vinet,et al.  Guided optics in rotating dielectric media , 1988 .

[69]  J. Sethares,et al.  Acoustic and magnetic surface wave ring interferometers for rotation rate sensing , 1974 .

[70]  M. Mehring,et al.  Geometric phase in nonadiabatic figure-8 experiments , 1995 .

[71]  K. Kovács Deforming-Light-Path Ring-Laser Experiments , 1972 .

[72]  Hall,et al.  Improved Kennedy-Thorndike experiment to test special relativity. , 1990, Physical review letters.

[73]  W. Burns,et al.  Observation of coherence effects in a quasi-monochromatic fiber-optic gyroscope , 1987 .

[74]  G. Scorgie Electromagnetism in noninertial coordinates , 1990 .

[75]  K. Schwab,et al.  Detection of the Earth's rotation using superfluid phase coherence , 1997, Nature.

[76]  D. Foster Exact evaluation of the collapse phase boundary for two-dimensional directed polymers , 1990 .

[77]  M. Scully,et al.  The ring laser gyro , 1985 .

[78]  L. Stodolsky Matter and light wave interferometry in gravitational fields , 1979 .

[79]  F. Riehle,et al.  Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. , 1991, Physical review letters.

[80]  Michael V Berry,et al.  Anticipations of the Geometric Phase , 1990 .

[81]  I. Prigogine,et al.  Thermodynamics and cosmology , 1989 .

[82]  W. de Sitter,et al.  On Einstein's theory of gravitation and its astronomical consequences. Second paper , 1916 .

[83]  Aberration Problems. A Discussion concerning the Motion of the Ether near the Earth, and concerning the Connexion between Ether and Gross Matter; with Some New Experiments , 1893 .

[84]  H. Fearn The Aharonov-Bohm effect revisited , 1995 .

[85]  Quantum-related reference frames and the local physical significance of potentials , 1974 .

[86]  The theory of the classical gravitational field , 1995 .

[87]  S. Ezekiel,et al.  Fiber-Optic Rotation Sensors and Related Technologies , 1982 .

[88]  S. Mori,et al.  Ring laser and ring interferometer in accelerated systems , 1979 .

[89]  Hasselbach,et al.  Sagnac experiment with electrons: Observation of the rotational phase shift of electron waves in vacuum. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[90]  L. Rivlin Photons in a waveguide (some thought experiments) , 1997 .

[91]  J. Ihm BROKEN TIME-REVERSAL SYMMETRY AND BERRY’S PHASE , 1993 .

[92]  Jeeva Anandan,et al.  The geometric phase , 1992, Nature.

[93]  A quantum mechanical twin paradox , 1990 .

[94]  J. Bladel Relativistic theory of rotating disks , 1973 .

[95]  Hans Thirring,et al.  ber die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. , 1918 .

[96]  R. Neutze,et al.  Sagnac experiment with electrons: Reanalysis of a rotationally induced phase shift for charged particles , 1998 .

[97]  L. Okun,et al.  Gravitation, photons, clocks. , 1999 .

[98]  G. B. Malykin Earlier studies of the Sagnac effect , 1997 .

[99]  Yakir Aharonov,et al.  Topological Quantum Effects for Neutral Particles , 1984 .

[100]  G. Sagnac L'ether lumineux demontre par l'effet du vent relatif d'ether dans un interferometre en rotation uniforme , 1913 .

[101]  C. H. Tang,et al.  ELECTROMAGNETIC CAVITY RESONANCES IN ACCELERATED SYSTEMS , 1966 .

[102]  R. V. Jones Rotary ‘aether drag’ , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[103]  METHODOLOGICAL NOTES: The relation of Thomas precession to Ishlinskii's theorem as applied to the rotating image of a relativistically moving body , 1999 .

[104]  L. Schiff A Question in General Relativity. , 1939, Proceedings of the National Academy of Sciences of the United States of America.

[105]  P. Harzer Über die Mitführung des Lichtes in Glas und die Aberration , 1914 .

[106]  T. Chang Maxwell's equations in anisotropic space , 1979 .

[107]  Zur Optik der bewegten Körper , 1907 .

[108]  A. Michelson,et al.  On the relative motion of the Earth and the luminiferous ether , 1887, American Journal of Science.

[109]  R. Colella,et al.  EFFECT OF EARTH'S ROTATION ON THE QUANTUM MECHANICAL PHASE OF THE NEUTRON , 1979 .

[110]  D. A. Korneev,et al.  Geometrical phase effects in neutron optics , 1996 .

[111]  A. Einstein Zur Elektrodynamik bewegter Körper , 1905 .

[112]  E. Schulz-dubois Alternative interpretation of rotation rate sensing by ring laser , 1966 .

[113]  W. Kantor Direct First-Order Experiment on the Propagation of Light from a Moving Source , 1962 .

[114]  S. J. Barnett Magnetization by Rotation , 1915 .

[115]  W. Burns,et al.  Polarizer requirements for fiber gyroscopes with high-birefringence fiber and broad-band sources , 1984 .

[116]  C. Moller,et al.  The Theory of Relativity , 1953, The Mathematical Gazette.

[117]  W. Leeb,et al.  Optical fiber gyroscopes: Sagnac or Fizeau effect? , 1979, Applied optics.

[118]  W. Dultz,et al.  Direct observation of Berry's topological phase by using an optical fiber ring interferometer , 1997 .

[119]  Arthur Eddington The mathematical theory of relativity , 1923 .

[120]  Pertti Hakonen,et al.  Detection of the rotation of the earth with a superfluid gyrometer , 1997 .

[121]  Edmund Taylor Whittaker Reviews of Books and Recordings: A History of the Theories of Aether and Electricity , 1954 .

[122]  J. Rembielinski The relativistic ether hypothesis , 1980 .

[123]  J. Anandan Sagnac effect in relativistic and nonrelativistic physics , 1981 .

[124]  J. Anandan Interference, gravity and gauge fields , 1979 .

[125]  E. Kintner,et al.  Polarization control in optical-fiber gyroscopes. , 1981, Optics letters.

[126]  A. Logunov,et al.  METHODOLOGICAL NOTES: Special theory of relativity and the Sagnac effect , 1988 .

[127]  J. Lense,et al.  Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie , 1918 .

[128]  R. Burghardt Zur Relativität der Beschleunigung , 1983 .

[129]  A review of the Aharonov-Carmi thought experiment concerning the inertial and electromagnetic vector potentials , 1980 .

[130]  R. Tolman Relativity, Thermodynamics, and Cosmology , 1934 .

[131]  T. Mo Theory of Electrodynamics in Media in Noninertial Frames and Applications , 1970 .

[132]  H. Bilger,et al.  Light drag in a ring laser: An improved determination of the drag coefficient , 1977 .

[133]  Ricardo T. de Carvalho,et al.  Experiment to separate the Fresnel drag and Sagnac effects in a fiber optic gyro , 1996, Optics + Photonics.

[134]  Ihm Berry's phase originated from the broken time-reversal symmetry: Theory and application to anyon superconductivity. , 1991, Physical review letters.

[135]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[136]  H. Lefèvre,et al.  Electromagnétisme des milieux diélectriques linéaires en rotation et application à la propagation d'ondes guidées. , 1982, Applied optics.

[137]  H. Yilmaz On the new theory of gravitation , 1972 .

[138]  G. Kuerti,et al.  New Analysis of the Interferometer Observations of Dayton C. Miller , 1955 .

[139]  P. A. Egelstaff,et al.  Measurement of the Red Shift in an Accelerated System Using the Mössbauer Effect in Fe 57 , 1960 .