웨이브릿 영역에서 기하학적 특징과 PCA / LDA를 사용한 얼굴 인식 방법

본 논문은 얼굴의 기하학적인 특징과 웨이브릿 변환을 사용한 PCA/LDA 복합 방법을 제안하여 얼굴 인식 시스템의 성능을 향상시켰다. 기존의 PCA/LDA 방법은 형태적인 분산의 정도에 따라 유사도를 측정하였기 때문에 얼굴 윤곽선을 정확하게 반영하지 못하였다. 이 단점을 극복하기 위하여 본 논문에서는 눈과 입사이의 거리를 측정하여 질의영상과 훈련영상에서 큰 차이가 있을 경우에는 얼굴내의 눈, 코, 턱 각각의 영역에 대한 에너지를 특징 벡터로 사용하여 기존의 PCA/LDA로 계산한 유사도를 재산정하였다. 본 논문에서 제안한 방법을 이용해서 ORL 데이터베이스의 400개 얼굴 영상에 대해 모의 실험한 결과 기존의 PCA/LDA 방법보다 약 4%의 인식률 향상이 있음을 보였다.