Introduction to Confirmatory Factor Analysis and Structural Equation Modeling

Confirmatory factor analysis (CFA) is a powerful and flexible statistical technique that has become an increasingly popular tool in all areas of psychology including educational research. CFA focuses on modeling the relationship between manifest (i.e., observed) indicators and underlying latent variables (factors).

[1]  J. Tukey,et al.  Multiple-Factor Analysis , 1947 .

[2]  D. Campbell,et al.  Convergent and discriminant validation by the multitrait-multimethod matrix. , 1959, Psychological bulletin.

[3]  P. Bentler,et al.  Significance Tests and Goodness of Fit in the Analysis of Covariance Structures , 1980 .

[4]  J. H. Steiger Statistically based tests for the number of common factors , 1980 .

[5]  D. A. Kenny,et al.  The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. , 1986, Journal of personality and social psychology.

[6]  Karl G. Jöreskog,et al.  Lisrel 8: User's Reference Guide , 1997 .

[7]  P. Bentler,et al.  Comparative fit indexes in structural models. , 1990, Psychological bulletin.

[8]  M. Browne,et al.  Alternative Ways of Assessing Model Fit , 1992 .

[9]  R. MacCallum,et al.  Model modifications in covariance structure analysis: the problem of capitalization on chance. , 1992, Psychological bulletin.

[10]  D. A. Kenny,et al.  Analysis of the multitrait^multimethod matrix by confirmatory factor analysis , 1992 .

[11]  Scott Eliason,et al.  Maximum Likelihood Estimation , 1993 .

[12]  R. MacCallum,et al.  Power analysis and determination of sample size for covariance structure modeling. , 1996 .

[13]  Rex B. Kline,et al.  Principles and Practice of Structural Equation Modeling , 1998 .

[14]  P. Bentler,et al.  Cutoff criteria for fit indexes in covariance structure analysis : Conventional criteria versus new alternatives , 1999 .

[15]  R. MacCallum,et al.  Applications of structural equation modeling in psychological research. , 2000, Annual review of psychology.

[16]  Li-tze Hu,et al.  Academic self-efficacy and first year college student performance and adjustment. , 2001 .

[17]  Gordon W. Cheung,et al.  Evaluating Goodness-of-Fit Indexes for Testing Measurement Invariance , 2002 .

[18]  R. P. McDonald,et al.  Principles and practice in reporting structural equation analyses. , 2002, Psychological methods.

[19]  B. Muthén,et al.  How to Use a Monte Carlo Study to Decide on Sample Size and Determine Power , 2002 .

[20]  J. Schafer,et al.  Missing data: our view of the state of the art. , 2002, Psychological methods.

[21]  P. Allison Missing data techniques for structural equation modeling. , 2003, Journal of abnormal psychology.

[22]  S. Maxwell,et al.  Testing mediational models with longitudinal data: questions and tips in the use of structural equation modeling. , 2003, Journal of abnormal psychology.

[23]  Lisa L. Harlow,et al.  An Illustration of a Longitudinal Cross-Lagged Design for Larger Structural Equation Models , 2003 .

[24]  Kenneth A. Bollen,et al.  Latent curve models: A structural equation perspective , 2005 .

[25]  L. Collins Analysis of longitudinal data: the integration of theoretical model, temporal design, and statistical model. , 2006, Annual review of psychology.

[26]  Todd D. Little,et al.  A Non-arbitrary Method of Identifying and Scaling Latent Variables in SEM and MACS Models , 2006 .

[27]  James A. Bovaird,et al.  On the Merits of Orthogonalizing Powered and Product Terms: Implications for Modeling Interactions Among Latent Variables , 2006 .

[28]  T. Brown,et al.  Confirmatory Factor Analysis for Applied Research , 2006 .

[29]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[30]  John Fox,et al.  TEACHER'S CORNER: Structural Equation Modeling With the sem Package in R , 2006 .

[31]  James A. Bovaird,et al.  Modeling contextual effects in longitudinal studies , 2007 .

[32]  Muthén Bengt,et al.  Growth Mixture Modeling , 2008, Encyclopedia of Autism Spectrum Disorders.

[33]  T Asparouhov,et al.  Muthén, B., & Growth mixture analysis: Analysis with non-Gaussian random effects. , 2008 .

[34]  Kristopher J Preacher,et al.  Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models , 2008, Behavior research methods.

[35]  Kristopher J Preacher,et al.  Latent Growth Curve Modeling , 2008 .

[36]  D. Mackinnon Introduction to Statistical Mediation Analysis , 2008 .

[37]  Timothy Teo,et al.  Structural Equation Modeling in Educational Research: Concepts and Applications , 2009 .

[38]  Kristopher J Preacher,et al.  Mediation Models for Longitudinal Data in Developmental Research , 2009 .

[39]  J. Mcardle Latent variable modeling of differences and changes with longitudinal data. , 2009, Annual review of psychology.

[40]  B. Muthén,et al.  Exploratory Structural Equation Modeling , 2009 .

[41]  Kristopher J Preacher,et al.  A general multilevel SEM framework for assessing multilevel mediation. , 2010, Psychological methods.

[42]  Craig K. Enders,et al.  Applied Missing Data Analysis , 2010 .

[43]  R. Kline Principles and practice of structural equation modeling, 3rd ed. , 2011 .