Image tag refinement by regularized latent Dirichlet allocation

Abstract Tagging is nowadays the most prevalent and practical way to make images searchable. However, in reality many manually-assigned tags are irrelevant to image content and hence are not reliable for applications. A lot of recent efforts have been conducted to refine image tags. In this paper, we propose to do tag refinement from the angle of topic modeling and present a novel graphical model, regularized latent Dirichlet allocation (rLDA). In the proposed approach, tag similarity and tag relevance are jointly estimated in an iterative manner, so that they can benefit from each other, and the multi-wise relationships among tags are explored. Moreover, both the statistics of tags and visual affinities of images in the corpus are explored to help topic modeling. We also analyze the superiority of our approach from the deep structure perspective. The experiments on tag ranking and image retrieval demonstrate the advantages of the proposed method.

[1]  Yi Yang,et al.  Ranking with local regression and global alignment for cross media retrieval , 2009, ACM Multimedia.

[2]  Bingbing Ni,et al.  Assistive tagging: A survey of multimedia tagging with human-computer joint exploration , 2012, CSUR.

[3]  Changhu Wang,et al.  Image annotation refinement using random walk with restarts , 2006, MM '06.

[4]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[5]  David M. Blei,et al.  Relational Topic Models for Document Networks , 2009, AISTATS.

[6]  Hagai Attias,et al.  Supervised topic model for automatic image annotation , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[7]  Ja-Ling Wu,et al.  SheepDog: group and tag recommendation for flickr photos by automatic search-based learning , 2008, ACM Multimedia.

[8]  Shuicheng Yan,et al.  Image tag refinement towards low-rank, content-tag prior and error sparsity , 2010, ACM Multimedia.

[9]  Ralf Krestel,et al.  Latent dirichlet allocation for tag recommendation , 2009, RecSys '09.

[10]  Nenghai Yu,et al.  Learning to tag , 2009, WWW '09.

[11]  Meng Wang,et al.  Event Driven Web Video Summarization by Tag Localization and Key-Shot Identification , 2012, IEEE Transactions on Multimedia.

[12]  Marcel Worring,et al.  Learning tag relevance by neighbor voting for social image retrieval , 2008, MIR '08.

[13]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[14]  Natsuda Kaothanthong,et al.  A feature-word-topic model for image annotation , 2010, CIKM '10.

[15]  Dong Liu,et al.  Tag ranking , 2009, WWW '09.

[16]  T. Minka Estimating a Dirichlet distribution , 2012 .

[17]  Tat-Seng Chua,et al.  NUS-WIDE: a real-world web image database from National University of Singapore , 2009, CIVR '09.

[18]  Kilian Q. Weinberger,et al.  Resolving tag ambiguity , 2008, ACM Multimedia.

[19]  Dong Liu,et al.  Image retagging , 2010, ACM Multimedia.

[20]  Dong Liu,et al.  Image Retagging Using Collaborative Tag Propagation , 2011, IEEE Transactions on Multimedia.

[21]  Luo Si,et al.  Effective automatic image annotation via a coherent language model and active learning , 2004, MULTIMEDIA '04.

[22]  Ralf Krestel,et al.  Tag Recommendation Using Probabilistic Topic Models , 2009, DC@PKDD/ECML.

[23]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[24]  Michael I. Jordan,et al.  Modeling annotated data , 2003, SIGIR.

[25]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Zi Huang,et al.  Inter-media hashing for large-scale retrieval from heterogeneous data sources , 2013, SIGMOD '13.

[27]  Hao Xu,et al.  Tag refinement by regularized LDA , 2009, ACM Multimedia.

[28]  Tao Mei,et al.  Correlative multi-label video annotation , 2007, ACM Multimedia.

[29]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[30]  Mor Naaman,et al.  Why we tag: motivations for annotation in mobile and online media , 2007, CHI.

[31]  Yansong Feng,et al.  Automatic Image Annotation Using Auxiliary Text Information , 2008, ACL.

[32]  Gustavo Carneiro,et al.  Supervised Learning of Semantic Classes for Image Annotation and Retrieval , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Marcel Worring,et al.  Learning Social Tag Relevance by Neighbor Voting , 2009, IEEE Transactions on Multimedia.

[34]  R. Manmatha,et al.  Using Maximum Entropy for Automatic Image Annotation , 2004, CIVR.

[35]  Hao Wang,et al.  Recommending Flickr groups with social topic model , 2012, Information Retrieval.

[36]  Ning Zhou,et al.  A Hybrid Probabilistic Model for Unified Collaborative and Content-Based Image Tagging , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[38]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[39]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[40]  Shih-Fu Chang,et al.  Active Context-Based Concept Fusionwith Partial User Labels , 2006, 2006 International Conference on Image Processing.

[41]  Shih-Fu Chang,et al.  To search or to label?: predicting the performance of search-based automatic image classifiers , 2006, MIR '06.

[42]  Hans-Peter Kriegel,et al.  Hierarchical Bayesian Models for Collaborative Tagging Systems , 2009, 2009 Ninth IEEE International Conference on Data Mining.