Temperature dependent magnetic properties of highly chemically ordered Fe55−xNixPt45L10 films

Magnetic media using materials with high uniaxial magneto-crystalline anisotropy, KU, combined with a thermal assist to overcome write field limitations have been proposed as one of the potential technologies to extend the areal density of magnetic disk recording beyond the limitations of current technology. Here we present an investigation on structural and temperature dependent magnetic properties of chemically ordered epitaxial Fe55−xNixPt45 thin films. Increasing Ni additions result in a steady reduction of magneto-crystalline anisotropy, saturation magnetization, and Curie temperature. The ability to control thermomagnetic properties over a wide range makes Fe55−xNixPt45 and similar FePt-based pseudo-binary alloys attractive base materials for media applications in thermally assisted magnetic recording.

[1]  M. Toney,et al.  Microstructure and thermal stability of advanced longitudinal media , 2000 .

[2]  Tetsuya Osaka,et al.  Newly developed inductive write head with electroplated CoNiFe film , 1998 .

[3]  C. Luo,et al.  Nanostructured FePt:B2O3 thin films with perpendicular magnetic anisotropy , 2000 .

[4]  M. Toney,et al.  Grain size control in FePt thin films by Ar-ion etched Pt seed layers , 2001 .

[5]  Roger Wood,et al.  Detection And Capacity Limits In Magnetic Media noise , 1998, 7th Joint MMM-Intermag Conference. Abstracts (Cat. No.98CH36275).

[6]  Matthias Wuttig,et al.  High-power laser light source for near-field optics and its application to high-density optical data storage , 1999 .

[7]  J. K. Howard,et al.  High anisotropy L1/sub 0/ thin films for longitudinal recording , 1995 .

[8]  Michael F. Toney,et al.  Perpendicular magnetic anisotropy and magnetic domain structure in sputtered epitaxial FePt (001) L10 films , 1998 .

[9]  Hirofumi Sukeda,et al.  Thermally assisted magnetic recording on flux-detectable RE-TM media , 2001 .

[10]  Scott,et al.  Enhanced magneto-optical Kerr effect in spontaneously ordered FePt alloys: Quantitative agreement between theory and experiment. , 1994, Physical review. B, Condensed matter.

[11]  Jacobus Josephus Maria Ruigrok,et al.  Disk recording beyond 100 Gb/in.2 : hybrid recording? (invited) , 2000 .

[12]  Anthony Arrott,et al.  Introduction to the theory of ferromagnetism , 1996 .

[13]  Masahiko Takahashi,et al.  New Recording Method Combining Thermo-Magnetic Writing and Flux Detection , 1999 .

[14]  Thierry Valet,et al.  Characteristics of thermally assisted magnetic recording , 2001 .

[15]  M Mansuripur,et al.  Laser-induced local heating of moving multilayer media. , 1983, Applied optics.

[16]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[17]  David A. Thompson,et al.  THE ROLE OF PERPENDICULAR RECORDING IN THE FUTURE OF HARD DISK STORAGE , 1997 .

[18]  Michael F. Toney,et al.  Growth temperature dependence of long‐range alloy order and magnetic properties of epitaxial FexPt1−x (x≂0.5) films , 1996 .

[19]  Tim Rausch,et al.  Near-field hybrid recording with a mode index waveguide lens , 2000, Optical Data Storage.

[20]  J. Cadogan,et al.  Ultrahigh coercive force in epitaxial Fe-Pt(0 0 1) films , 1998 .

[21]  D. Weller,et al.  Magnetic, structural and microstructural properties of FePt/M (M=C,BN) granular films , 2001 .

[22]  Y. Uesaka,et al.  Compositional and temperature dependence of basic magnetic properties of CoCr-alloy thin films , 2000 .

[23]  M. Kryder Magnetic recording beyond the superparamagnetic limit , 2000 .

[24]  Margaret Evans Best,et al.  High K/sub u/ materials approach to 100 Gbits/in/sup 2/ , 2000 .

[25]  H. Okumura,et al.  Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets , 1995 .

[26]  A. Moser,et al.  Thermal effect limits in ultrahigh-density magnetic recording , 1999 .

[27]  J W Goodman,et al.  Laser-induced local heating of multilayers. , 1982, Applied optics.

[28]  Margaret Evans Best,et al.  Writing and reading perpendicular magnetic recording media patterned by a focused ion beam , 2001 .

[29]  Michael F. Toney,et al.  Control of the axis of chemical ordering and magnetic anisotropy in epitaxial FePt films , 1996 .

[30]  C. Mee,et al.  Magnetic Recording Technology , 1996 .

[31]  Bruce D. Terris,et al.  Near‐field optical data storage using a solid immersion lens , 1994 .

[32]  K. Ouchi,et al.  Sputter-deposited (Fe-Pt)-MgO composite films for perpendicular recording media , 2001 .

[33]  David A. Thompson,et al.  The future of magnetic data storage technology , 2000, IBM J. Res. Dev..

[34]  H. Miyajima,et al.  Simple analysis of torque measurement of magnetic thin films , 1976 .

[35]  M. Kryder,et al.  Near‐field magneto‐optics and high density data storage , 1992 .

[36]  R. Pease,et al.  Patterned media: a viable route to 50 Gbit/in/sup 2/ and up for magnetic recording? , 1997 .