Multi-Agent System for Detecting Elderly People Falls through Mobile Devices

Falls in the elderly and disabled people represent a major health problem in terms of primary care costs facing the public and private systems. This paper presents a multi-agent system capable of detecting falls through sensors in a mobile device and act accordingly at runtime. The new system incorporates a fall detection algorithm based on machine learning and data classification using decision trees. The base of the system are three types of interrelated agents that coordinate to know the position of a user from data obtained through a mobile terminal, and GPS position, which in case of fall may be sent via SMS or by an automatic call. The proposed system is self-adaptive, since as new fall date is incorporated, the decision mechanisms are automatically updated and personalized taking into account the user profile.

[1]  Neil Johnson,et al.  A smart sensor to detect the falls of the elderly , 2004, IEEE Pervasive Computing.

[2]  Tong Zhang,et al.  Fall Detection by Wearable Sensor and One-Class SVM Algorithm , 2006 .

[3]  Caroline Rougier,et al.  Demo : Fall Detection Using 3 D Head Trajectory Extracted From a Single Camera Video Sequence , 2006 .

[4]  C. Becker,et al.  Evaluation of a fall detector based on accelerometers: A pilot study , 2005, Medical and Biological Engineering and Computing.

[5]  Jerónimo Romero-Nieva Lozano Actualización de las recomendaciones científicas de la Sociedad Española de Enfermería de Urgencias y Emergencias , 2006 .

[6]  Irene Prat-González,et al.  Detección del riesgo de caídas en ancianos en atención primaria mediante un protocolo de cribado , 2007 .

[7]  Lien-Fu Lai,et al.  An Intelligent Homecare Emergency Service System for Elder Falling , 2007 .

[8]  A K Bourke,et al.  Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. , 2007, Gait & posture.

[9]  A. Bourke,et al.  The identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of falls. , 2008, Medical Engineering and Physics.

[10]  A. Bourke,et al.  A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. , 2008, Medical engineering & physics.

[11]  Ilias Maglogiannis,et al.  Advanced patient or elder fall detection based on movement and sound data , 2008, Pervasive 2008.

[12]  A. G. Conesa,et al.  Epidemiología de caídas de ancianos en España: una revisión sistemática, 2007 , 2008 .

[13]  M. Lazaro-Del Nogal,et al.  Características de las caídas de causa neurológica en ancianos , 2008 .

[14]  Esmeralda Molina Robles,et al.  Incidencia de caídas en la Unidad de Hemodiálisis del Hospital General de Vic. , 2008 .

[15]  Ilias Maglogiannis,et al.  Advanced patient or elder fall detection based on movement and sound data , 2008, 2008 Second International Conference on Pervasive Computing Technologies for Healthcare.

[16]  M N Nyan,et al.  A wearable system for pre-impact fall detection. , 2008, Journal of biomechanics.

[17]  Israel Gannot,et al.  A Method for Automatic Fall Detection of Elderly People Using Floor Vibrations and Sound—Proof of Concept on Human Mimicking Doll Falls , 2009, IEEE Transactions on Biomedical Engineering.

[18]  Mitja Lustrek,et al.  Fall Detection and Activity Recognition with Machine Learning , 2009, Informatica.

[19]  J. Meunier,et al.  An intelligent videomonitoring system for fall detection at home: perceptions of elderly people , 2009, Journal of telemedicine and telecare.

[20]  M. L. Nogal,et al.  Caídas en el anciano , 2009 .