Unlocking mixed oxides with unprecedented stoichiometries from heterometallic metal-organic frameworks for the catalytic hydrogenation of CO2

[1]  O. Terasaki,et al.  Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction , 2020, Nature.

[2]  J. Navarro,et al.  Heterometallic Titanium-Organic Frameworks as Dual Metal Catalysts for Synergistic Non-Buffered Hydrolysis of Nerve Agent Simulants , 2020, Chem.

[3]  Ana E. Platero‐Prats,et al.  Heterometallic titanium-organic frameworks by metal-induced dynamic topological transformations. , 2020, Journal of the American Chemical Society.

[4]  H. García,et al.  Mixed-Metal MOFs: Unique Opportunities in Metal-organic Framework Functionality and Design. , 2019, Angewandte Chemie.

[5]  J. Nørskov,et al.  Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. , 2019, Chemical reviews.

[6]  François-Xavier Coudert,et al.  Mixed-metal metal-organic frameworks. , 2019, Chemical Society reviews.

[7]  L. Daemen,et al.  Elucidation of the Reaction Mechanism for High-Temperature Water Gas Shift over an Industrial-Type Copper-Chromium-Iron Oxide Catalyst. , 2019, Journal of the American Chemical Society.

[8]  H. García,et al.  De novo synthesis of mesoporous photoactive titanium(iv)–organic frameworks with MIL-100 topology , 2019, Chemical science.

[9]  P. Fenter,et al.  Oxidation induced strain and defects in magnetite crystals , 2019, Nature Communications.

[10]  M. Willinger,et al.  2D Metal Organic Framework‐Graphitic Carbon Nanocomposites as Precursors for High‐Performance O2‐Evolution Electrocatalysts , 2018, Advanced Energy Materials.

[11]  J. Gascón,et al.  Metal Organic Framework-Derived Iron Catalysts for the Direct Hydrogenation of CO2 to Short Chain Olefins , 2018, ACS Catalysis.

[12]  F. Gándara,et al.  Metal-organic Frameworks Incorporating Multiple Metal Elements , 2018, Israel Journal of Chemistry.

[13]  K. Daasbjerg,et al.  Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals , 2018, Nature Catalysis.

[14]  Qian Zhang,et al.  Mechanism of the Reverse Water–Gas Shift Reaction Catalyzed by Cu12TM Bimetallic Nanocluster: A Density Functional Theory Study , 2018, Journal of Cluster Science.

[15]  R. Sougrat,et al.  Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials , 2018, Science.

[16]  J. Klemeš,et al.  Mechanisms and kinetics of CO2 hydrogenation to value-added products: A detailed review on current status and future trends , 2017 .

[17]  Ping Liu,et al.  Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface. , 2017, Journal of the American Chemical Society.

[18]  F. Kapteijn,et al.  Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes , 2017, Chemical reviews.

[19]  Peter G. Boyd,et al.  Accurate Characterization of the Pore Volume in Microporous Crystalline Materials , 2017, Langmuir : the ACS journal of surfaces and colloids.

[20]  F. Kapteijn,et al.  High-temperature Fischer-Tropsch synthesis over FeTi mixed oxide model catalysts: Tailoring activity and stability by varying the Ti/Fe ratio , 2017 .

[21]  K. Cychosz,et al.  Recent advances in the textural characterization of hierarchically structured nanoporous materials. , 2017, Chemical Society reviews.

[22]  Xiaodong Chen,et al.  Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis , 2016 .

[23]  E. Coronado,et al.  Small-pore driven high capacitance in a hierarchical carbon via carbonization of Ni-MOF-74 at low temperatures. , 2016, Chemical communications.

[24]  A. Frenkel,et al.  Dynamics of CrO3–Fe2O3 Catalysts during the High-Temperature Water-Gas Shift Reaction: Molecular Structures and Reactivity , 2016 .

[25]  Minghui Zhu,et al.  Iron-Based Catalysts for the High-Temperature Water–Gas Shift (HT-WGS) Reaction: A Review , 2016 .

[26]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[27]  J. Brédas,et al.  Magnetite Fe3O4 (111) Surfaces: Impact of Defects on Structure, Stability, and Electronic Properties , 2015 .

[28]  B. Brunetti,et al.  X-Ray Photoelectron Spectroscopic Characterization of Chemically Modified Electrodes Used as Chemical Sensors and Biosensors: A Review , 2015 .

[29]  Hye Soo Yoon,et al.  Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability , 2015 .

[30]  F. Kapteijn,et al.  Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts , 2015, Nature Communications.

[31]  N. Masciocchi,et al.  Lattice parameters and site occupancy factors of magnetite-maghemite core-shell nanoparticles. A critical study , 2014 .

[32]  Yunhui Huang,et al.  MOF‐Derived Porous ZnO/ZnFe2O4/C Octahedra with Hollow Interiors for High‐Rate Lithium‐Ion Batteries , 2014, Advanced materials.

[33]  N. D. de Leeuw,et al.  A DFT study of the structures, stabilities and redox behaviour of the major surfaces of magnetite Fe₃O₄. , 2014, Physical chemistry chemical physics : PCCP.

[34]  M. McHenry,et al.  Synthesis and magnetic properties of single phase titanomagnetites , 2014 .

[35]  Richard L. Martin,et al.  haracterization and comparison of pore landscapes in crystalline orous materials , 2013 .

[36]  Jens K Nørskov,et al.  Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO. , 2013, The journal of physical chemistry letters.

[37]  K. Rosso,et al.  Synthesis and properties of titanomagnetite (Fe(3-x)Ti(x)O4) nanoparticles: a tunable solid-state Fe(II/III) redox system. , 2012, Journal of colloid and interface science.

[38]  A. Morsali,et al.  Applications of metal–organic coordination polymers as precursors for preparation of nano-materials , 2012 .

[39]  Hongnan Zhang,et al.  Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method. , 2012, Nanoscale.

[40]  K. Rosso,et al.  Thermodynamics of the magnetite-ulvöspinel (Fe3O4-Fe2TiO4) solid solution , 2012 .

[41]  Jianguo Wang,et al.  Fe3O4 surface electronic structures and stability from GGA + U , 2012 .

[42]  Maciej Haranczyk,et al.  Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials , 2012 .

[43]  A. Kiejna,et al.  Surface properties of the clean and Au/Pd covered Fe 3 O 4 (111): DFT and DFT+U study , 2011, 1112.5827.

[44]  Lev Sarkisov,et al.  Computational structure characterisation tools in application to ordered and disordered porous materials , 2011 .

[45]  H. Neumann,et al.  Palladium-catalyzed carbonylative coupling reactions between Ar-X and carbon nucleophiles. , 2011, Chemical Society reviews.

[46]  Wei Wang,et al.  Recent advances in catalytic hydrogenation of carbon dioxide. , 2011, Chemical Society reviews.

[47]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[48]  Guichang Wang,et al.  Structure Sensitivity for Forward and Reverse Water-Gas Shift Reactions on Copper Surfaces: A DFT Study , 2010 .

[49]  R. Pattrick,et al.  Fe site occupancy in magnetite-ulvöspinel solid solutions: A new approach using X-ray magnetic circular dichroism , 2010 .

[50]  R. Cingolani,et al.  Size, shape, and internal atomic ordering of nanocrystals by atomic pair distribution functions: a comparative study of gamma-Fe2O3 nanosized spheres and tetrapods. , 2009, Journal of the American Chemical Society.

[51]  Shijian Yang,et al.  Decolorization of methylene blue by heterogeneous Fenton reaction using Fe3−xTixO4 (0 ≤ x ≤ 0.78) at neutral pH values , 2009 .

[52]  V. Petkov Nanostructure by high- energy X-ray diffraction , 2008 .

[53]  Jian-Min Zuo,et al.  Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. , 2008, Nature materials.

[54]  M. Finnis,et al.  Surface structure and water adsorption on Fe3O4(111): Spin-density functional theory and on-site Coulomb interactions , 2008 .

[55]  C. Serre,et al.  Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. , 2007, Chemical communications.

[56]  Yong Yang,et al.  Effect of manganese on an iron-based Fischer–Tropsch synthesis catalyst prepared from ferrous sulfate , 2007 .

[57]  Simon J L Billinge,et al.  The Problem with Determining Atomic Structure at the Nanoscale , 2007, Science.

[58]  Jouko Lahtinen,et al.  Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method , 2005 .

[59]  N. S. McIntyre,et al.  Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds , 2004 .

[60]  Feng Huang,et al.  Nanoparticles: Strained and Stiff , 2004, Science.

[61]  I. Shvets,et al.  Atomically resolved spin-dependent tunneling on the oxygen-terminated Fe3O4(111). , 2004, Physical review letters.

[62]  T. Riedel,et al.  Fischer–Tropsch on Iron with H2/CO and H2/CO2 as Synthesis Gases: The Episodes of Formation of the Fischer–Tropsch Regime and Construction of the Catalyst , 2003 .

[63]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[64]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[65]  P. Perriat,et al.  Chemical Heterogeneities in Nanometric Titanomagnetites Prepared by Soft Chemistry and Studied Ex Situ: Evidence for Fe-Segregation and Oxidation Kinetics , 2001 .

[66]  G. Sawatzky,et al.  In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy , 1999 .

[67]  Nadine Millot,et al.  Structure, cation distribution, and properties of nanocrystalline titanomagnetites obtained by mechanosynthesis : Comparison with soft chemistry , 1998 .

[68]  B. A. Wechsler,et al.  Crystal structure and cation distribution in titanomagnetites (Fe (sub 3-x) Ti x O 4 ) , 1984 .

[69]  D. Lindsley Chapter 1. The CRYSTAL CHEMISTRY and STRUCTURE of OXIDE MINERALS as EXEMPLIFIED by the Fe-Ti OXIDES , 1976 .

[70]  Y. Syono,et al.  Neutron and Magnetic Studies of a Single Crystal of Fe 2 TiO 4 , 1971 .

[71]  W. O'reilly,et al.  The synthesis and inversion of non-stoichiometric titanomagnetites , 1971 .

[72]  A. Stephenson The Temperature Dependent Cation Distribution in Titanomagnetites , 1969 .

[73]  W. O'reilly,et al.  Cation distribution in titanomagnetites (1−x)Fe3O4 − xFe2TiO4 , 1965 .

[74]  R. W. Taylor Liquidus Temperatures in the System FeO—Fe2O3—TiO2 , 1963 .

[75]  I. Kushiro γ→α transition in Fe2O3 with pressure. , 1960 .

[76]  Ynn S. Cor-r,et al.  Studies of the crystal structure and crystal chemistry of titanomaghemite , 2007 .

[77]  The Cativa ' " ' Process for the Manufacture , 2005 .

[78]  P. Perriat,et al.  Control of grain size and morphologies of nanograined ferrites by adaptation of the synthesis route: mechanosynthesis and soft chemistry , 2003 .

[79]  C. Koch Determination of core structure periodicity and point defect density along dislocations , 2002 .