Single-molecule interfacial electron transfer dynamics of porphyrin on TiO2 nanoparticles: dissecting the interfacial electric field and electron accepting state density dependent dynamics.

Single-molecule photon-stamping spectroscopy correlated with electrochemical techniques was used to dissect complex interfacial electron transfer (ET) dynamics by probing an m-ZnTCPP molecule anchored to a TiO2 NP surface while electrochemically controlling the energetically-accessible surface states of TiO2 NPs. Application of negative potential increases the electron density in TiO2 NPs, resulting in hindered forward ET and enhanced backward ET due to the changes in the interfacial electric field and the occupancy of acceptor states.

[1]  Charge-Transfer Dynamics of Fluorescent Dye-Sensitized Electrodes under Applied Biases. , 2015, The journal of physical chemistry letters.

[2]  Peng Wang,et al.  A metal-free N-annulated thienocyclopentaperylene dye: power conversion efficiency of 12% for dye-sensitized solar cells. , 2015, Angewandte Chemie.

[3]  M. K. Brennaman,et al.  Driving force dependent, photoinduced electron transfer at degenerately doped, optically transparent semiconductor nanoparticle interfaces. , 2014, Journal of the American Chemical Society.

[4]  Ryan M. O’Donnell,et al.  Electric Fields Control TiO2(e(-)) + I3(-) → Charge Recombination in Dye-Sensitized Solar Cells. , 2014, The journal of physical chemistry letters.

[5]  H. P. Lu,et al.  Single-Molecule Interfacial Electron Transfer Dynamics of Porphyrin on TiO2 Nanoparticles: Dissecting the Complex Electronic Coupling Dependent Dynamics , 2014 .

[6]  J. Bisquert,et al.  Titanium dioxide nanomaterials for photovoltaic applications. , 2014, Chemical reviews.

[7]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[8]  Javier J. Concepcion,et al.  Crossing the divide between homogeneous and heterogeneous catalysis in water oxidation , 2013, Proceedings of the National Academy of Sciences.

[9]  T. Lian,et al.  Probing spatially dependent photoinduced charge transfer dynamics to TiO2 nanoparticles using single quantum dot modified atomic force microscopy tips. , 2013, Nano letters.

[10]  Kristin L. Wustholz,et al.  Dispersive Electron-Transfer Kinetics from Single Molecules on TiO2 Nanoparticle Films , 2013 .

[11]  C. J. Fecko,et al.  Investigation of Factors That Affect Excited-State Lifetime Distribution of Dye-Sensitized Nanoparticle Films , 2013 .

[12]  G. Meyer,et al.  Distance dependent electron transfer at TiO2 interfaces sensitized with phenylene ethynylene bridged Ru(II)-isothiocyanate compounds. , 2013, Journal of the American Chemical Society.

[13]  M. Abdellah,et al.  Effect of metal oxide morphology on electron injection from CdSe quantum dots to ZnO , 2013 .

[14]  S. Leone,et al.  Mechanisms for charge trapping in single semiconductor nanocrystals probed by fluorescence blinking. , 2013, Chemical Society reviews.

[15]  V. Sundström,et al.  Role of Adsorption Structures of Zn-Porphyrin on TiO2 in Dye-Sensitized Solar Cells Studied by Sum Frequency Generation Vibrational Spectroscopy and Ultrafast Spectroscopy , 2013 .

[16]  C. Berlinguette,et al.  Stabilization of ruthenium sensitizers to TiO2 surfaces through cooperative anchoring groups. , 2013, Journal of the American Chemical Society.

[17]  D. Fischer,et al.  Energy Alignment, Molecular Packing, and Electronic Pathways: Zinc(II) Tetraphenylporphyrin Derivatives Adsorbed on TiO2(110) and ZnO(11–20) Surfaces , 2012 .

[18]  C. J. Fecko,et al.  Power-Law Kinetics in the Photoluminescence of Dye-Sensitized Nanoparticle Films: Implications for Electron Injection and Charge Transport , 2012 .

[19]  P. Kamat Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design. , 2012, The journal of physical chemistry letters.

[20]  C. Galland,et al.  Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots , 2011, Nature.

[21]  Samuel L. Kleinman,et al.  Surface-Enhanced Raman Spectroelectrochemistry of TTF-Modified Self-Assembled Monolayers. , 2011, The journal of physical chemistry letters.

[22]  T. Tachikawa,et al.  Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. , 2011, Journal of the American Chemical Society.

[23]  H. P. Lu,et al.  Simultaneous spectroscopic and topographic near-field imaging of TiO2 single surface states and interfacial electronic coupling. , 2011, Nano letters.

[24]  T. Tachikawa,et al.  Design of a highly sensitive fluorescent probe for interfacial electron transfer on a TiO2 surface. , 2010, Angewandte Chemie.

[25]  T. Lian,et al.  Suppressed blinking dynamics of single QDs on ITO. , 2010, ACS nano.

[26]  K. Braun,et al.  Nanoscale spectroscopic imaging of organic semiconductor films by plasmon-polariton coupling. , 2010, Physical review letters.

[27]  Yuanmin Wang,et al.  Combined single-molecule photon-stamping spectroscopy and femtosecond transient absorption spectroscopy studies of interfacial electron transfer dynamics. , 2010, Journal of the American Chemical Society.

[28]  J. Durrant,et al.  Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[29]  Yuanmin Wang,et al.  Probing single-molecule interfacial electron transfer dynamics of porphyrin on TiO2 nanoparticles. , 2009, Journal of the American Chemical Society.

[30]  Jin Wang,et al.  Statistics and kinetics of single-molecule electron transfer dynamics in complex environments: a simulation model study. , 2008, The Journal of chemical physics.

[31]  Walter R. Duncan,et al.  Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. , 2007, Annual review of physical chemistry.

[32]  P. Barbara,et al.  Single-molecule spectroelectrochemistry (SMS-EC). , 2006, Journal of the American Chemical Society.

[33]  H. P. Lu,et al.  Tip-enhanced near-field Raman spectroscopy probing single dye-sensitized TiO2 nanoparticles , 2006 .

[34]  M. Newton,et al.  Single molecule electron transfer dynamics in complex environments. , 2005, Physical review letters.

[35]  David F. Watson,et al.  Electron injection at dye-sensitized semiconductor electrodes. , 2005, Annual review of physical chemistry.

[36]  T. Lian,et al.  Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. , 2005, Annual review of physical chemistry.

[37]  H. P. Lu,et al.  Intermittent single-molecule interfacial electron transfer dynamics. , 2004, Journal of the American Chemical Society.

[38]  Aging correlation functions for blinking nanocrystals, and other on-off stochastic processes. , 2004, The Journal of chemical physics.

[39]  J. Bisquert,et al.  Fermi Level of Surface States in TiO2 Nanoparticles , 2003 .

[40]  Emilio Palomares,et al.  Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. , 2003, Journal of the American Chemical Society.

[41]  D. Klug,et al.  Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films: A comparison of ruthenium bipyridyl and porphyrin sensitizer dyes , 2000 .

[42]  David R. Klug,et al.  Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films , 2000 .

[43]  Jenny Nelson,et al.  Continuous-time random-walk model of electron transport in nanocrystalline TiO 2 electrodes , 1999 .

[44]  Saif A. Haque,et al.  Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films under Externally Applied Bias , 1998 .

[45]  R. W. Fessenden,et al.  DYE CAPPED SEMICONDUCTOR NANOCLUSTERS. ROLE OF BACK ELECTRON TRANSFER IN THE PHOTOSENSITIZATION OF SNO2 NANOCRYSTALLITES WITH CRESYL VIOLET AGGREGATES , 1997 .

[46]  H. Peter Lu,et al.  Single-molecule spectral fluctuations at room temperature , 1997, Nature.

[47]  Joseph T. Hupp,et al.  Semiconductor-Based Interfacial Electron-Transfer Reactivity: Decoupling Kinetics from pH-Dependent Band Energetics in a Dye-Sensitized Titanium Dioxide/Aqueous Solution System , 1996 .

[48]  L. K. Patterson,et al.  Photosensitization of Nanocrystalline Semiconductor Films. Modulation of Electron Transfer between Excited Ruthenium Complex and SnO2 Nanocrystallites with an Externally Applied Bias , 1996 .