Sub-Heisenberg estimation strategies are ineffective.

In interferometry, sub-Heisenberg strategies claim to achieve a phase estimation error smaller than the inverse of the mean number of photons employed (Heisenberg bound). Here we show that one can achieve a comparable precision without performing any measurement, just using the large prior information that sub-Heisenberg strategies require. For uniform prior (i.e., no prior information), we prove that these strategies cannot achieve more than a fixed gain of about 1.73 over Heisenberg-limited interferometry. Analogous results hold for arbitrary single-mode prior distributions. These results extend also beyond interferometry: the effective error in estimating any parameter is lower bounded by a quantity proportional to the inverse expectation value (above a ground state) of the generator of translations of the parameter.

[1]  Aravind Chiruvelli,et al.  Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. , 2009, Physical review letters.

[2]  Masahito Hayashi,et al.  Phase estimation with photon number constraint , 2010, 1011.2546.

[3]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[4]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[5]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  Kamal Bhattacharyya,et al.  Quantum decay and the Mandelstam-Tamm-energy inequality , 1983 .

[7]  M. Hall Phase Resolution and Coherent Phase States , 1993 .

[8]  H. M. Wiseman,et al.  How to perform the most accurate possible phase measurements , 2009, 0907.0014.

[9]  Braunstein Quantum limits on precision measurements of phase. , 1992, Physical review letters.

[10]  Pieter Kok,et al.  Erratum: General Optimality of the Heisenberg Limit for Quantum Metrology [Phys. Rev. Lett. 105, 180402 (2010)] , 2011 .

[11]  Milburn,et al.  Optimal quantum measurements for phase estimation. , 1995, Physical review letters.

[12]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[13]  A quantum state of ultra-low phase noise , 1991 .

[14]  Sergio Boixo,et al.  Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.

[15]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[16]  S. Lloyd,et al.  Quantum limits to dynamical evolution , 2002, quant-ph/0210197.

[17]  Pieter Kok,et al.  General optimality of the Heisenberg limit for quantum metrology. , 2010, Physical review letters.

[18]  C. Helstrom Quantum detection and estimation theory , 1969 .

[19]  Samuel L Braunstein,et al.  Exponentially enhanced quantum metrology. , 2008, Physical review letters.

[20]  G. Summy,et al.  PHASE OPTIMIZED QUANTUM STATES OF LIGHT , 1990 .

[21]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[22]  Z. Y. Ou,et al.  FUNDAMENTAL QUANTUM LIMIT IN PRECISION PHASE MEASUREMENT , 1997 .

[23]  Shapiro,et al.  Ultimate quantum limits on phase measurement. , 1989, Physical review letters.

[24]  Shapiro,et al.  Quantum phase measurement: A system-theory perspective. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[25]  Howard Mark Wiseman,et al.  Optimal input states and feedback for interferometric phase estimation , 2001 .

[26]  Ou Complementarity and Fundamental Limit in Precision Phase Measurement. , 1996, Physical review letters.

[27]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[28]  Luis,et al.  Optimum phase-shift estimation and the quantum description of the phase difference. , 1996, Physical review. A, Atomic, molecular, and optical physics.