Sub-Heisenberg estimation strategies are ineffective.
暂无分享,去创建一个
[1] Aravind Chiruvelli,et al. Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. , 2009, Physical review letters.
[2] Masahito Hayashi,et al. Phase estimation with photon number constraint , 2010, 1011.2546.
[3] S. Lloyd,et al. Advances in quantum metrology , 2011, 1102.2318.
[4] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[5] Wineland,et al. Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[6] Kamal Bhattacharyya,et al. Quantum decay and the Mandelstam-Tamm-energy inequality , 1983 .
[7] M. Hall. Phase Resolution and Coherent Phase States , 1993 .
[8] H. M. Wiseman,et al. How to perform the most accurate possible phase measurements , 2009, 0907.0014.
[9] Braunstein. Quantum limits on precision measurements of phase. , 1992, Physical review letters.
[10] Pieter Kok,et al. Erratum: General Optimality of the Heisenberg Limit for Quantum Metrology [Phys. Rev. Lett. 105, 180402 (2010)] , 2011 .
[11] Milburn,et al. Optimal quantum measurements for phase estimation. , 1995, Physical review letters.
[12] Klauder,et al. SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.
[13] A quantum state of ultra-low phase noise , 1991 .
[14] Sergio Boixo,et al. Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.
[15] Ericka Stricklin-Parker,et al. Ann , 2005 .
[16] S. Lloyd,et al. Quantum limits to dynamical evolution , 2002, quant-ph/0210197.
[17] Pieter Kok,et al. General optimality of the Heisenberg limit for quantum metrology. , 2010, Physical review letters.
[18] C. Helstrom. Quantum detection and estimation theory , 1969 .
[19] Samuel L Braunstein,et al. Exponentially enhanced quantum metrology. , 2008, Physical review letters.
[20] G. Summy,et al. PHASE OPTIMIZED QUANTUM STATES OF LIGHT , 1990 .
[21] G. Milburn,et al. Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.
[22] Z. Y. Ou,et al. FUNDAMENTAL QUANTUM LIMIT IN PRECISION PHASE MEASUREMENT , 1997 .
[23] Shapiro,et al. Ultimate quantum limits on phase measurement. , 1989, Physical review letters.
[24] Shapiro,et al. Quantum phase measurement: A system-theory perspective. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[25] Howard Mark Wiseman,et al. Optimal input states and feedback for interferometric phase estimation , 2001 .
[26] Ou. Complementarity and Fundamental Limit in Precision Phase Measurement. , 1996, Physical review letters.
[27] S. Lloyd,et al. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.
[28] Luis,et al. Optimum phase-shift estimation and the quantum description of the phase difference. , 1996, Physical review. A, Atomic, molecular, and optical physics.