Analog joint source-channel coding in Rayleigh fading channels

We consider discrete-time all-analog-processing joint source-channel coding, using non-linear spiral-like curves. We assume a Rayleigh channel, where the receiver may employ or not multiple antennas. Maximum Likelihood (ML) and Minimum Mean Square Error (MMSE) detection are considered. Our results show that MMSE performs much better than ML in high CSNR in single-antenna wireless systems, while diversity combining is able to significantly reduce such performance gap, therefore making the low complexity ML decoding very attractive in the case of multiple receive antennas.

[1]  Thomas J. Goblick,et al.  Theoretical limitations on the transmission of data from analog sources , 1965, IEEE Trans. Inf. Theory.

[2]  Luis Castedo,et al.  Experimental Evaluation of Analog Joint Source-Channel Coding in Indoor Environments , 2011, 2011 IEEE International Conference on Communications (ICC).

[3]  H. Vincent Poor,et al.  Iterative (turbo) soft interference cancellation and decoding for coded CDMA , 1999, IEEE Trans. Commun..

[4]  Yichuan Hu,et al.  Analog Joint Source Channel Coding Using Space-Filling Curves and MMSE Decoding , 2009, 2009 Data Compression Conference.

[5]  Toby Berger,et al.  Optimum pulse amplitude modulation-I: Transmitter-receiver design and bounds from information theory , 1967, IEEE Trans. Inf. Theory.

[6]  Yichuan Hu,et al.  Analog Joint Source-Channel Coding Using Non-Linear Curves and MMSE Decoding , 2011, IEEE Transactions on Communications.

[7]  Tor A. Ramstad,et al.  Shannon-kotel-nikov mappings in joint source-channel coding , 2009, IEEE Transactions on Communications.

[8]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[9]  Reinaldo A. Valenzuela,et al.  Simplified processing for high spectral efficiency wireless communication employing multi-element arrays , 1999, IEEE J. Sel. Areas Commun..

[10]  George L. Turin,et al.  The theory of optimum noise immunity , 1959 .

[11]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[12]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[13]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[14]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[15]  P.A. Floor,et al.  Dimension Reducing Mappings in Joint Source-Channel Coding , 2006, Proceedings of the 7th Nordic Signal Processing Symposium - NORSIG 2006.

[16]  Tor A. Ramstad,et al.  Using 2:1 Shannon mapping for joint source-channel coding , 2005, Data Compression Conference.