Mandibular hypoplasia, deafness, progeroid features and lipodystrophy (MDPL) syndrome in the context of inherited lipodystrophies.

[1]  Alice Barateau,et al.  The p.R482W substitution in A-type lamins deregulates SREBP1 activity in Dunnigan-type familial partial lipodystrophy. , 2015, Human molecular genetics.

[2]  John F. Robinson,et al.  A novel LIPE nonsense mutation found using exome sequencing in siblings with late-onset familial partial lipodystrophy. , 2014, The Canadian journal of cardiology.

[3]  F. Santini,et al.  Identification of a novel mutation in the polymerase delta 1 (POLD1) gene in a lipodystrophic patient affected by mandibular hypoplasia, deafness, progeroid features (MDPL) syndrome. , 2014, Metabolism: clinical and experimental.

[4]  P. Bauer,et al.  PIK3R1 mutations in SHORT syndrome , 2014, Clinical genetics.

[5]  S. O’Rahilly,et al.  Clinical and Molecular Characterization of a Novel PLIN1 Frameshift Mutation Identified in Patients With Familial Partial Lipodystrophy , 2014, Diabetes.

[6]  N. Lévy,et al.  New ZMPSTE24 (FACE1) mutations in patients affected with restrictive dermopathy or related progeroid syndromes and mutation update , 2013, European Journal of Human Genetics.

[7]  Jeffrey R O'Connell,et al.  Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. , 2014, The New England journal of medicine.

[8]  P. Robinson,et al.  Neonatal progeroid variant of Marfan syndrome with congenital lipodystrophy results from mutations at the 3' end of FBN1 gene. , 2014, European journal of medical genetics.

[9]  T. Nolis Exploring the pathophysiology behind the more common genetic and acquired lipodystrophies , 2013, Journal of Human Genetics.

[10]  Flavia Palombo,et al.  A Novel Null Homozygous Mutation Confirms CACNA2D2 as a Gene Mutated in Epileptic Encephalopathy , 2013, PloS one.

[11]  Y. Sakamoto,et al.  Severe congenital lipodystrophy and a progeroid appearance: Mutation in the penultimate exon of FBN1 causing a recognizable phenotype , 2013, American journal of medical genetics. Part A.

[12]  N. Briand,et al.  What the Genetics of Lipodystrophy Can Teach Us About Insulin Resistance and Diabetes , 2013, Current Diabetes Reports.

[13]  B. Donadille,et al.  Partial lipodystrophy with severe insulin resistance and adult progeria Werner syndrome , 2013, Orphanet Journal of Rare Diseases.

[14]  Patrick Callier,et al.  PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy. , 2013, American journal of human genetics.

[15]  Sahar Mansour,et al.  Mutations in PIK3R1 cause SHORT syndrome. , 2013, American journal of human genetics.

[16]  Stefan Johansson,et al.  SHORT syndrome with partial lipodystrophy due to impaired phosphatidylinositol 3 kinase signaling. , 2013, American journal of human genetics.

[17]  M. Weedon,et al.  An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy , 2013, Nature Genetics.

[18]  Charles R. Evans,et al.  Alterations in Lipid Signaling Underlie Lipodystrophy Secondary to AGPAT2 Mutations , 2012, Diabetes.

[19]  J. Hancock,et al.  Co-Regulation of Cell Polarization and Migration by Caveolar Proteins PTRF/Cavin-1 and Caveolin-1 , 2012, PloS one.

[20]  J. Goodman,et al.  Seipin: from human disease to molecular mechanism , 2012, Journal of Lipid Research.

[21]  D. Standley,et al.  A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. , 2011, The Journal of clinical investigation.

[22]  David N Cooper,et al.  On the sequence‐directed nature of human gene mutation: The role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease , 2011, Human mutation.

[23]  A. Garg Lipodystrophies: Genetic and Acquired Body Fat Disorders , 2011 .

[24]  N. Niikawa,et al.  Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome , 2011, Proceedings of the National Academy of Sciences.

[25]  J. Goldblatt,et al.  Further evidence for a marfanoid syndrome with neonatal progeroid features and severe generalized lipodystrophy due to frameshift mutations near the 3′ end of the FBN1 gene , 2011, American journal of medical genetics. Part A.

[26]  P. Robinson,et al.  Progeroid facial features and lipodystrophy associated with a novel splice site mutation in the final intron of the FBN1 gene , 2011, American journal of medical genetics. Part A.

[27]  S. O’Rahilly,et al.  Perilipin deficiency and autosomal dominant partial lipodystrophy. , 2011, The New England journal of medicine.

[28]  K. Mamchaoui,et al.  Type B mandibuloacral dysplasia with congenital myopathy due to homozygous ZMPSTE24 missense mutation , 2011, European Journal of Human Genetics.

[29]  A. Garg,et al.  PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. , 2010, American journal of human genetics.

[30]  E. Zackai,et al.  Early onset mandibuloacral dysplasia due to compound heterozygous mutations in ZMPSTE24 , 2010, American journal of medical genetics. Part A.

[31]  P. Robinson,et al.  Marfan syndrome with neonatal progeroid syndrome‐like lipodystrophy associated with a novel frameshift mutation at the 3′ terminus of the FBN1‐gene , 2010, American journal of medical genetics. Part A.

[32]  G. Novelli,et al.  A novel syndrome of mandibular hypoplasia, deafness, and progeroid features associated with lipodystrophy, undescended testes, and male hypogonadism. , 2010, The Journal of clinical endocrinology and metabolism.

[33]  M. Jensen,et al.  Fat tissue, aging, and cellular senescence , 2010, Aging cell.

[34]  G. Novelli,et al.  Skeletal phenotype of mandibuloacral dysplasia associated with mutations in ZMPSTE24. , 2010, Bone.

[35]  P. Ferré,et al.  Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects[S] , 2010, Journal of Lipid Research.

[36]  I. Hausmanowa-Petrusewicz,et al.  Progeroid syndrome with scleroderma‐like skin changes associated with homozygous R435C LMNA mutation , 2009, American journal of medical genetics. Part A.

[37]  S. Bernasconi,et al.  Mandibuloacral dysplasia type A in childhood , 2009, American journal of medical genetics. Part A.

[38]  I. Nonaka,et al.  Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. , 2009, The Journal of clinical investigation.

[39]  S. O’Rahilly,et al.  Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC , 2009, EMBO molecular medicine.

[40]  É. Hajduch,et al.  Filling up adipocytes with lipids. Lessons from caveolin-1 deficiency. , 2009, Biochimica et biophysica acta.

[41]  A. K. Agarwal,et al.  Lipodystrophies: disorders of adipose tissue biology. , 2009, Biochimica et biophysica acta.

[42]  A. Garg,et al.  Severe mandibuloacral dysplasia-associated lipodystrophy and progeria in a young girl with a novel homozygous Arg527Cys LMNA mutation. , 2008, The Journal of clinical endocrinology and metabolism.

[43]  R. Kitazawa,et al.  FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. , 2008, The Journal of clinical investigation.

[44]  I. Mohri,et al.  Severe mandibuloacral dysplasia caused by novel compound heterozygous ZMPSTE24 mutations in two Japanese siblings , 2008, Clinical genetics.

[45]  W. Kress,et al.  Association of homozygous LMNA mutation R471C with new phenotype: Mandibuloacral dysplasia, progeria, and rigid spine muscular dystrophy , 2008, American journal of medical genetics. Part A.

[46]  S. O’Rahilly,et al.  Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. , 2008, The Journal of clinical endocrinology and metabolism.

[47]  Y. Fukushima,et al.  Mandibuloacral dysplasia and a novel LMNA mutation in a woman with severe progressive skeletal changes , 2007, American journal of medical genetics. Part A.

[48]  A. Vielle,et al.  Compound heterozygosity for mutations in LMNA in a patient with a myopathic and lipodystrophic mandibuloacral dysplasia type A phenotype. , 2007, The Journal of clinical endocrinology and metabolism.

[49]  M. V. Masala,et al.  Epidemiology and clinical aspects of Werner's syndrome in North Sardinia: description of a cluster. , 2007, European journal of dermatology : EJD.

[50]  J. Denecke,et al.  A homozygous ZMPSTE24 null mutation in combination with a heterozygous mutation in the LMNA gene causes Hutchinson‐Gilford progeria syndrome (HGPS): insights into the pathophysiology of HGPS , 2006, Human mutation.

[51]  H. Van Esch,et al.  Focal Segmental Glomerulosclerosis in Patients with Mandibuloacral Dysplasia Owing to ZMPSTE24 Deficiency , 2006, Journal of Investigative Medicine.

[52]  A. Garg,et al.  A novel homozygous Ala529Val LMNA mutation in Turkish patients with mandibuloacral dysplasia. , 2005, The Journal of clinical endocrinology and metabolism.

[53]  A. K. Agarwal,et al.  Compound heterozygous ZMPSTE24 mutations reduce prelamin A processing and result in a severe progeroid phenotype , 2005, Journal of Medical Genetics.

[54]  K. Heinimann,et al.  Homozygous missense mutation in the lamin A/C gene causes autosomal recessive Hutchinson-Gilford progeria syndrome , 2004, Journal of Medical Genetics.

[55]  D. Dunger,et al.  A Family with Severe Insulin Resistance and Diabetes Due to a Mutation in AKT2 , 2004, Science.

[56]  D. Cooper,et al.  Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment , 1991, Human Genetics.

[57]  J. Lupski,et al.  Mandibuloacral dysplasia caused by homozygosity for the R527H mutation in lamin A/C , 2003, Journal of medical genetics.

[58]  A. K. Agarwal,et al.  Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. , 2003, Human molecular genetics.

[59]  J. Stock,et al.  Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. , 2003, The Journal of clinical investigation.

[60]  A. Chait,et al.  Köbberling type of familial partial lipodystrophy: an underrecognized syndrome. , 2003, Diabetes care.

[61]  Laura Scott,et al.  Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome , 2003, Nature.

[62]  R. Hegele,et al.  LMNA is mutated in Hutchinson-Gilford progeria (MIM 176670) but not in Wiedemann-Rautenstrauch progeroid syndrome (MIM 264090) , 2003, Journal of Human Genetics.

[63]  G. Scarano,et al.  Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. , 2002, American journal of human genetics.

[64]  A. Bowcock,et al.  AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34 , 2002, Nature Genetics.

[65]  J. Papp,et al.  Identification of the gene altered in Berardinelli–Seip congenital lipodystrophy on chromosome 11q13 , 2001, Nature Genetics.

[66]  S. Munro,et al.  Accumulation of Caveolin in the Endoplasmic Reticulum Redirects the Protein to Lipid Storage Droplets , 2001, The Journal of cell biology.

[67]  S. Gregory,et al.  LMNA, encoding lamin A/C, is mutated in partial lipodystrophy , 2000, Nature Genetics.

[68]  R. Hegele,et al.  Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. , 2000, Human molecular genetics.

[69]  S. O’Rahilly,et al.  Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension , 1999, Nature.

[70]  G. Schellenberg,et al.  Mutations in the consensus helicase domains of the Werner syndrome gene. Werner's Syndrome Collaborative Group. , 1997, American journal of human genetics.

[71]  O. Trygstad,et al.  Generalized lipodystrophy, congenital and acquired (lipoatrophy) , 1996, Acta paediatrica (Oslo, Norway : 1992). Supplement.

[72]  J. Köbberling,et al.  Familial partial lipodystrophy: two types of an X linked dominant syndrome, lethal in the hemizygous state. , 1986, Journal of medical genetics.

[73]  M. Seip Lipodystrophy and gigantism with associated endocrine manifestations. A new diencephalic syndrome? , 1959, Acta paediatrica.

[74]  M. Seip 38. Congenital Hyperpituitarism of Hypothalamic Origin; A new Diencephalic Syndrome with Endocrine Manifestations , 1959, Acta paediatrica. Supplementum.

[75]  W. Berardinelli An undiagnosed endocrinometabolic syndrome: report of 2 cases. , 1954, The Journal of clinical endocrinology and metabolism.