Analyzing Benardete's comment on decimal notation
暂无分享,去创建一个
[1] Piotr Blaszczyk,et al. Leibniz versus Ishiguro: Closing a Quarter Century of Syncategoremania , 2016, HOPOS: The Journal of the International Society for the History of Philosophy of Science.
[2] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[3] H. Keisler. Elementary Calculus: An Infinitesimal Approach , 1976 .
[4] Mikhail G. Katz,et al. Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.
[5] Vladimir Kanovei,et al. Cauchy’s Infinitesimals, His Sum Theorem, and Foundational Paradigms , 2017, 1704.07723.
[6] Rebecca Vinsonhaler. Teaching Calculus with Infinitesimals , 2016 .
[7] Mikhail G. Katz,et al. Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.
[8] Mikhail G. Katz,et al. From discrete arithmetic to arithmetic of the continuum , 2013 .
[9] Vladimir Kanovei,et al. Interpreting the Infinitesimal Mathematics of Leibniz and Euler , 2016, 1605.00455.
[10] Mikhail G. Katz,et al. Zooming in on infinitesimal 1–.9.. in a post-triumvirate era , 2010, 1003.1501.
[11] Piotr Blaszczyk,et al. Is mathematical history written by the victors , 2013, 1306.5973.
[12] Emanuele Bottazzi,et al. Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow , 2014, 1407.0233.
[13] Bar-Ilan University,et al. From Pythagoreans and Weierstrassians to True Infinitesimal Calculus , 2017 .
[14] R. Ely. Nonstandard Student Conceptions About Infinitesimals , 2010 .
[15] Karin U. Katz,et al. When is .999... less than 1? , 2010, The Mathematics Enthusiast.
[16] B. Dawson. 0.999… = 1: An Infinitesimal Explanation , 2016 .