Analyzing Benardete's comment on decimal notation

Philosopher Benardete challenged both the conventional wisdom and the received mathematical treatment of zero, dot, nine recurring. An initially puzzling passage in Benardete on the intelligibility of the continuum reveals challenging insights into number systems, the foundations of modern analysis, and mathematics education. A key concept here is, in Terry Tao's terminology, that of an ultralimit. Keywords: real analysis; infinitesimals; decimal notation; procedures vs ontology

[1]  Piotr Blaszczyk,et al.  Leibniz versus Ishiguro: Closing a Quarter Century of Syncategoremania , 2016, HOPOS: The Journal of the International Society for the History of Philosophy of Science.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  H. Keisler Elementary Calculus: An Infinitesimal Approach , 1976 .

[4]  Mikhail G. Katz,et al.  Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.

[5]  Vladimir Kanovei,et al.  Cauchy’s Infinitesimals, His Sum Theorem, and Foundational Paradigms , 2017, 1704.07723.

[6]  Rebecca Vinsonhaler Teaching Calculus with Infinitesimals , 2016 .

[7]  Mikhail G. Katz,et al.  Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.

[8]  Mikhail G. Katz,et al.  From discrete arithmetic to arithmetic of the continuum , 2013 .

[9]  Vladimir Kanovei,et al.  Interpreting the Infinitesimal Mathematics of Leibniz and Euler , 2016, 1605.00455.

[10]  Mikhail G. Katz,et al.  Zooming in on infinitesimal 1–.9.. in a post-triumvirate era , 2010, 1003.1501.

[11]  Piotr Blaszczyk,et al.  Is mathematical history written by the victors , 2013, 1306.5973.

[12]  Emanuele Bottazzi,et al.  Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow , 2014, 1407.0233.

[13]  Bar-Ilan University,et al.  From Pythagoreans and Weierstrassians to True Infinitesimal Calculus , 2017 .

[14]  R. Ely Nonstandard Student Conceptions About Infinitesimals , 2010 .

[15]  Karin U. Katz,et al.  When is .999... less than 1? , 2010, The Mathematics Enthusiast.

[16]  B. Dawson 0.999… = 1: An Infinitesimal Explanation , 2016 .