Passively Mode-Locked Tm:YAG Ceramic Laser Based on Graphene

There is a growing interest in developing ultrafast laser sources around 2-μm wavelength range. Here, we experimentally demonstrate a diode-pumped passively mode-locked Tm:YAG ceramic laser using graphene as a mode locker. By transferring graphene synthesized by chemical vapor deposition onto Au-coated mirror as saturable absorber, continuous wave mode locking is successfully obtained in the Tm:YAG ceramic laser. The generated mode-locked pulses in 2-μm spectral region have a pulse width as short as 2.8 ps, with a maximum average output power of 158 mW and repetition rate of 98.7 MHz. The mode-locked mid-infrared pulses are very stable having a multitude of potential applications such as ultrafast molecule spectroscopy, mid-IR nonlinear frequency conversion, etc.

[1]  Xiaolei Zhu,et al.  Nd:YAG ceramic laser obtained high slope-efficiency of 62% in high power applications. , 2005, Optics express.

[2]  K. Loh,et al.  Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser , 2010, 1003.0154.

[3]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[4]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[5]  Theodore B Norris,et al.  Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. , 2008, Physical review letters.

[6]  H. Yagi,et al.  Optical properties and highly efficient laser oscillation of Nd:YAG ceramics , 2000, CLEO 2000.

[7]  Yan Lin Aung,et al.  Ceramic laser materials , 2008 .

[8]  Wilson Sibbett,et al.  Passive mode locking of a Tm,Ho:KY(WO4)2 laser around 2 microm. , 2009, Optics letters.

[9]  Günter Huber,et al.  175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes. , 2012, Optics express.

[10]  J Moger,et al.  Coherent nonlinear optical response of graphene. , 2010, Physical review letters.

[11]  Hideki Yagi,et al.  Laser-diode pumped heavy-doped Yb:YAG ceramic lasers. , 2007, Optics letters.

[12]  Zhenhua Ni,et al.  Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers , 2009, 0910.5820.

[13]  S. Wada,et al.  High-Power High-Efficiency Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature , 2008 .

[14]  Fabian Rotermund,et al.  High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm. , 2011, Optics letters.

[15]  D. Tang,et al.  Graphene mode-locked femtosecond laser at 2 μm wavelength. , 2012, Optics letters.

[16]  Yubai Pan,et al.  Diode‐Pumped Tm:YAG Ceramic Laser , 2009 .

[17]  W Sibbett,et al.  Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm. , 2011, Optics express.

[18]  Jing Kong,et al.  Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. , 2012, Nature chemistry.

[19]  R. Stoneman,et al.  Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. , 1990, Optics letters.

[20]  Nicolas Godbout,et al.  Z-scan measurement of the nonlinear refractive index of graphene. , 2012, Optics letters.

[21]  Akio Ikesue,et al.  Fabrication and Optical Properties of High‐Performance Polycrystalline Nd:YAG Ceramics for Solid‐State Lasers. , 1995 .

[22]  J. Brink,et al.  Doping graphene with metal contacts. , 2008, Physical review letters.

[23]  Weizheng Wang,et al.  The study of interaction between graphene and metals by Raman spectroscopy , 2011 .

[24]  C. Hierold,et al.  Spatially resolved Raman spectroscopy of single- and few-layer graphene. , 2006, Nano letters.

[25]  Leonard A. Pomeranz,et al.  Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP 2 optical parametric oscillators , 2000 .

[26]  S. Wada,et al.  Diode-Pumped Mode-Locked Yb:YAG Ceramic Laser , 2009 .

[27]  T Dekorsy,et al.  Mode-locked Tm,Ho:YAP laser around 2.1 μm. , 2013, Optics express.

[28]  Federico Pirzio,et al.  Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber. , 2013, Optics letters.

[29]  Animesh Jha,et al.  Femtosecond mode-locked Tm(3+) and Tm(3+)-Ho(3+) doped 2 μm glass lasers. , 2010, Optics express.

[30]  Seeram Ramakrishna,et al.  Graphene–Polymer Nanofiber Membrane for Ultrafast Photonics , 2010 .

[31]  Günter Steinmeyer,et al.  Passive mode-locking of a Tm-doped bulk laser near 2 microm using a carbon nanotube saturable absorber. , 2009, Optics express.

[32]  R. Waynant,et al.  Mid–infrared laser applications in medicine and biology , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  Randy Knize,et al.  Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber , 2010 .

[34]  王维,et al.  Passively mode-locked Tm,Ho:YVO4 laser based on a semiconductor saturable absorber mirror , 2012 .

[35]  Wilson Sibbett,et al.  Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm. , 2012, Optics express.

[36]  Thomas Dekorsy,et al.  Passively mode-locked Tm,Ho:YAG laser at 2 microm based on saturable absorption of intersubband transitions in quantum wells. , 2010, Optics express.

[37]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[38]  Zhipei Sun,et al.  Nanotube–Polymer Composites for Ultrafast Photonics , 2009 .

[39]  W. Gao,et al.  Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser. , 2012, Optics letters.

[40]  A. Okishev Highly efficient room-temperature Yb:YAG ceramic laser and regenerative amplifier. , 2012, Optics letters.

[41]  Michael G. Spencer,et al.  Measurement of Ultrafast Carrier Dynamics in Epitaxial Graphene , 2007, 0712.0119.

[42]  W. Gao,et al.  Highly efficient 2 μm Tm:YAG ceramic laser. , 2012, Optics letters.

[43]  Nicolas Godbout,et al.  Large nonlinear Kerr effect in graphene , 2012, 1203.5527.

[44]  Yang Wu,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[45]  Yan Wang,et al.  Efficient Q-switched Tm:YAG ceramic slab laser. , 2011, Optics express.

[46]  Brian M. Walsh,et al.  Review of Tm and Ho materials; spectroscopy and lasers , 2009 .

[47]  Ken-ichi Ueda,et al.  Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials , 2002 .

[48]  Thomas Dekorsy,et al.  Mode-locking of 2 Μm Tm,ho:yag Laser with Gainas and Gasb-based Sesams References and Links , 2022 .

[49]  F Rotermund,et al.  Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm. , 2013, Optics letters.

[50]  D. Shen,et al.  Diode-pumped high-efficiency Tm:YAG lasers. , 1999, Optics express.

[51]  H. Zeng,et al.  Laser-diode pumped 40-W Yb:YAG ceramic laser. , 2009, Optics express.

[52]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[53]  Dafu Cui,et al.  Light scattering and 2-μm laser performance of Tm:YAG ceramic , 2011 .