Trial-to-Trial Variability Identifying Multiple Evoked Components Using Differentially Variable Component Analysis:

[1]  C. Woody Characterization of an adaptive filter for the analysis of variable latency neuroelectric signals , 1967, Medical and biological engineering.

[2]  Kevin H. Knuth,et al.  Informed source separation: A Bayesian tutorial , 2013, 2005 13th European Signal Processing Conference.

[3]  D. S. Sivia Some Thoughts on Correlated Noise , 2004 .

[4]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[5]  C. Schroeder,et al.  Interpretation of high-resolution current source density profiles: a simulation of sublaminar contributions to the visual evoked potential , 1993, Experimental Brain Research.

[6]  Mingzhou Ding,et al.  Estimation of single-trial multicomponent ERPs: Differentially variable component analysis (dVCA) , 2003, Biological Cybernetics.

[7]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[8]  Mingzhou Ding,et al.  A Bayesian Approach to Estimating Coupling Between Neural Components: Evaluation of the Multiple Component, Event-Related Potential (mcERP) Algorithm , 2003 .

[9]  E. Gordon,et al.  Synchronous Gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia , 2003, Brain Research Reviews.

[10]  Barak A. Pearlmutter,et al.  Independent Components of Magnetoencephalography: Single-Trial Response Onset Times , 2002, NeuroImage.

[11]  Mingzhou Ding,et al.  Separation of multiple evoked responses using differential amplitude and latency variability , 2002, physics/0204085.

[12]  S. Bressler,et al.  Trial-to-trial variability of cortical evoked responses: implications for the analysis of functional connectivity , 2002, Clinical Neurophysiology.

[13]  T. Sejnowski,et al.  Dynamic Brain Sources of Visual Evoked Responses , 2002, Science.

[14]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[15]  John J. Foxe,et al.  Determinants and mechanisms of attentional modulation of neural processing. , 2001, Frontiers in Bioscience.

[16]  Tsunehiro Takeda,et al.  Single-Trial Magnetoencephalographic Data Decomposition and Localization Based on Independent Component Analysis Approach , 2000 .

[17]  C. Schroeder,et al.  Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. , 2000, Cerebral cortex.

[18]  Kevin H. Knuth,et al.  Convergent Bayesian formulations of blind source separation and electromagnetic source estimation , 1999 .

[19]  K. Knuth A Bayesian approach to source separation , 2002, physics/0205032.

[20]  P. Jaskowski,et al.  Amplitudes and latencies of single-trial ERP's estimated by a maximum-likelihood method , 1999, IEEE Transactions on Biomedical Engineering.

[21]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[22]  D. M. Schmidt,et al.  Bayesian inference applied to the electromagnetic inverse problem , 1998, Human brain mapping.

[23]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources , 1999, Neural Comput..

[24]  Marissa Westerfield,et al.  INDEPENDENT COMPONENT ANALYSIS OF SINGLE-TRIAL EVENT-RELATED POTENTIALS , 1999 .

[25]  Kevin H. Knuth,et al.  Difficulties Applying Recent Blind Source Separation Techniques to EEG and MEG , 2015, 1501.05068.

[26]  C. Schroeder,et al.  A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. , 1998, Cerebral cortex.

[27]  Kevin H. Knuth,et al.  Bayesian source separation and localization , 1998, Optics & Photonics.

[28]  E. Oja,et al.  ICA for the Extraction of Auditory Evoked Fields , 1998, NeuroImage.

[29]  S Makeig,et al.  Blind separation of auditory event-related brain responses into independent components. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. H. Lange,et al.  Modeling and estimation of single evoked brain potential components , 1997, IEEE Transactions on Biomedical Engineering.

[31]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[32]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[33]  Tzyy-Ping Jung,et al.  Independent Component Analysis of Electroencephalographic Data , 1995, NIPS.

[34]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[35]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[36]  C. Schroeder,et al.  Effects of wavelength on the timing and laminar distribution of illuminance-evoked activity in macaque V1 , 1995, Visual Neuroscience.

[37]  M Steinschneider,et al.  Localization of ERP generators and identification of underlying neural processes. , 1995, Electroencephalography and clinical neurophysiology. Supplement.

[38]  C E Schroeder,et al.  Defining the neural bases of visual selective attention: conceptual and empirical issues. , 1995, The International journal of neuroscience.

[39]  S. Bressler,et al.  Episodic multiregional cortical coherence at multiple frequencies during visual task performance , 1993, Nature.

[40]  W. Singer Synchronization of cortical activity and its putative role in information processing and learning. , 1993, Annual review of physiology.

[41]  É. Moulines,et al.  Second Order Blind Separation of Temporally Correlated Sources , 1993 .

[42]  C. Schroeder,et al.  Striate cortical contribution to the surface-recorded pattern-reversal vep in the alert monkey , 1991, Vision Research.

[43]  C. Schroeder,et al.  Laminar analysis of bicuculline-induced epileptiform activity in area 17 of the awake macaque , 1990, Brain Research.

[44]  T. Gasser,et al.  Variable latencies of noisy signals: Estimation and testing in brain potential data , 1987 .

[45]  J Möcks,et al.  Does filtering and smoothing of average evoked potentials really pay? A statistical comparison. , 1986, Electroencephalography and clinical neurophysiology.

[46]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[47]  C. Nicholson,et al.  Experimental optimization of current source-density technique for anuran cerebellum. , 1975, Journal of neurophysiology.

[48]  C. Nicholson,et al.  Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. , 1975, Journal of neurophysiology.