Ultra-weak Formulation of a Hypersingular Integral Equation on Polygons and DPG Method with Optimal Test Functions

We present an ultra-weak formulation of a hypersingular integral equation on closed polygons and prove its well-posedness and equivalence with the standard variational formulation. Based on this ultra-weak formulation we present a discontinuous Petrov--Galerkin method with optimal test functions and prove its quasi-optimal convergence in $L^2$. Theoretical results are confirmed by numerical experiments with uniform and adaptively refined meshes.

[1]  J. Nédélec,et al.  Integral equations with non integrable kernels , 1982 .

[2]  Ernst P. Stephan,et al.  An augmented galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problems , 1984 .

[3]  W. Wendland,et al.  A finite element method for some integral equations of the first kind , 1977 .

[4]  Victor M. Calo,et al.  A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D , 2011, J. Comput. Phys..

[5]  J. Planchard,et al.  Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans $\mathbf {R}^3$ , 1973 .

[6]  Norbert Heuer,et al.  Mortar Boundary Elements , 2010, SIAM J. Numer. Anal..

[7]  Victor M. Calo,et al.  A class of discontinuous Petrov-Galerkin methods. Part IV: Wave propagation , 2011 .

[8]  Leszek Demkowicz,et al.  A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .

[9]  Norbert Heuer,et al.  Crouzeix–Raviart boundary elements , 2009, Numerische Mathematik.

[10]  O. Cessenat,et al.  Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .

[11]  Leszek Demkowicz,et al.  A class of discontinuous Petrov-Galerkin methods. Part III , 2012 .

[12]  Martin Costabel,et al.  Experimental convergence rates for various couplings of boundary and finite elements , 1991 .

[13]  B. Després,et al.  SUR UNE FORMULATION VARIATIONNELLE DE TYPE ULTRA-FAIBLE , 1994 .

[14]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[15]  Ernst P. Stephan,et al.  A boundary integral equation method for three‐dimensional crack problems in elasticity , 1986 .

[16]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[17]  Norbert Heuer,et al.  Robust DPG Method for Convection-Dominated Diffusion Problems , 2013, SIAM J. Numer. Anal..

[18]  Norbert Heuer,et al.  A Nitsche-based domain decomposition method for hypersingular integral equations , 2012, Numerische Mathematik.

[19]  Norbert Heuer,et al.  On the h-p version of the boundary element method for Symm's integral equation on polygons , 1993 .

[20]  Leszek F. Demkowicz,et al.  Analysis of the DPG Method for the Poisson Equation , 2011, SIAM J. Numer. Anal..

[21]  Norbert Heuer,et al.  Discontinuous Galerkin hp-BEM with quasi-uniform meshes , 2013, Numerische Mathematik.