Dissipation at tidal and seismic frequencies in a melt‐free, anhydrous Mars

The measured inward motion of Phobos provides a constraint on the tidal dissipation factor, Q, within Mars. We model viscoelastic dissipation inside a convective Mars using a modified Burgers model based on laboratory experiments on anhydrous, melt‐free olivine. The model tidal Q is highly sensitive to the mantle potential temperature and grain size assumed but relatively insensitive to the bulk density and rigidity structure. Q thus provides a tight constraint on the Martian interior temperature. By fitting the observed tidal Q and tidal Love number (k2) values and requiring present‐day melt generation, we estimate that for a grain size of 1 cm the current mantle potential temperature is 1625±75 K, similar to that of the Earth. This estimate is consistent with recent petrologically derived determinations of mantle potential temperature but lower than estimates in some thermal evolution models. The presence of water in the Martian mantle would reduce our estimated temperature. Our preferred mantle grain size of ≈1 cm is somewhat larger than that of the Earth's upper mantle. The predicted mantle seismic Q is about 130 and is almost independent of depth. The Martian lithosphere represents a high seismic velocity lid, which should be readily detectable with future seismological observations.

[1]  R. Eanes,et al.  Constraints on Energy Dissipation in the Earth's Body Tide from Satellite Tracking and Altimetry , 2013 .

[2]  G. Hirth,et al.  Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists , 2013 .

[3]  W. Banerdt,et al.  Impact of Anelasticity on Mars' Dissipative Properties — Application to the InSight Mission , 2013 .

[4]  J. Bass Elasticity of Minerals, Glasses, and Melts , 2013 .

[5]  M. Rajeevan,et al.  Nowcasting severe convective activity over southeast India using ground‐based microwave radiometer observations , 2013 .

[6]  V. Sautter,et al.  The petrological expression of early Mars volcanism , 2013 .

[7]  O. Gasnault,et al.  Long-Term Evolution of the Martian Crust-Mantle System , 2013 .

[8]  P. Tarits,et al.  Mars Internal Structure Derived from MGS Magnetic Data , 2012 .

[9]  F. Nimmo,et al.  Dissipation at tidal and seismic frequencies in a melt-free Moon , 2012 .

[10]  Masaki Ogawa,et al.  Two-dimensional numerical studies on the effects of water on Martian mantle evolution induced by magmatism and solid-state mantle convection , 2012 .

[11]  P. Lognonné,et al.  INSIGHT and single-station broadband seismology: From signal and noise to interior structure determination , 2012 .

[12]  M. Efroimsky TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS , 2011, 1105.3936.

[13]  Kenneth L. Tanaka,et al.  Response Mars North Polar Deposits : Stratigraphy , Age , and Geodynamical , 2012 .

[14]  A. Pommier,et al.  Water storage and early hydrous melting of the Martian mantle , 2011 .

[15]  Masaki Ogawa,et al.  Numerical models of Martian mantle evolution induced by magmatism and solid‐state convection beneath stagnant lithosphere , 2011 .

[16]  Véronique Dehant,et al.  Geodesy constraints on the interior structure and composition of Mars , 2011 .

[17]  O. Gasnault,et al.  Thermal history of Mars inferred from orbital geochemistry of volcanic provinces , 2011, Nature.

[18]  Lars Stixrude,et al.  Thermodynamics of mantle minerals - II. Phase equilibria , 2011 .

[19]  A. Tommasi,et al.  Forsterite to wadsleyite phase transformation under shear stress and consequences for the Earth's mantle transition zone , 2011 .

[20]  I. Jackson,et al.  Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application , 2010 .

[21]  M. Grott,et al.  Crustal recycling, mantle dehydration, and the thermal evolution of Mars , 2010 .

[22]  S. Karato,et al.  Shear deformation of polycrystalline wadsleyite up to 2100 K at 14–17 GPa using a rotational Drickamer apparatus (RDA) , 2010 .

[23]  R. Dohmen,et al.  Diffusion in Polycrystalline Materials: Grain Boundaries, Mathematical Models, and Experimental Data , 2010 .

[24]  J. Vaucher,et al.  The volcanic history of central Elysium Planitia: Implications for martian magmatism , 2009 .

[25]  D. Kohlstedt,et al.  Effect of iron content on the creep behavior of olivine: 1. Anhydrous conditions , 2009 .

[26]  Qingsong Li,et al.  Mantle convection controls the observed lateral variations in lithospheric thickness on present‐day Mars , 2009 .

[27]  M. Grott,et al.  On the spatial variability of the Martian Elastic Lithosphere Thickness: Evidence for Mantle Plumes? , 2009 .

[28]  S. Karato,et al.  Plastic deformation of wadsleyite and olivine at high-pressure and high-temperature using a rotational Drickamer apparatus (RDA) , 2008 .

[29]  Roberto Orosei,et al.  Mars North Polar Deposits: Stratigraphy, Age, and Geodynamical Response , 2008, Science.

[30]  J. H. Roberts,et al.  Long-Term Stability of a Subsurface Ocean on Enceladus , 2007 .

[31]  J. Matas,et al.  On the anelastic contribution to the temperature dependence of lower mantle seismic velocities , 2007 .

[32]  V. Dehant,et al.  First numerical ephemerides of the Martian moons , 2007 .

[33]  Paul D. Asimow,et al.  Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites , 2007 .

[34]  J. Connolly,et al.  Constraining the Composition and Thermal State of Mars , 2007 .

[35]  Tilman Spohn,et al.  Geophysical constraints on the composition and structure of the Martian interior , 2005 .

[36]  Lars Stixrude,et al.  Thermodynamics of mantle minerals – I. Physical properties , 2005 .

[37]  David E. Smith,et al.  Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos , 2005 .

[38]  J. Sleewaegen,et al.  Interior structure of terrestrial planets : Modeling Mars' mantle and its electromagnetic, geodetic, and seismic properties , 2005 .

[39]  David E. Smith,et al.  Correction to “Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution” , 2004 .

[40]  J. Gerald,et al.  Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 1. Specimen fabrication , 2004 .

[41]  T. Gudkova,et al.  Mars: interior structure and excitation of free oscillations , 2004 .

[42]  T. Spohn,et al.  Early plate tectonics versus single-plate tectonics on Mars: Evidence from magnetic field history and crust evolution , 2003 .

[43]  W. Folkner,et al.  Fluid Core Size of Mars from Detection of the Solar Tide , 2003, Science.

[44]  V. Dehant,et al.  Tidally induced surface displacements, external potential variations, and gravity variations on Mars , 2003 .

[45]  W. Kiefer Melting in the martian mantle: Shergottite formation and implications for present‐day mantle convection on Mars , 2003 .

[46]  Sean C. Solomon,et al.  Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution , 2002 .

[47]  R. Phillips,et al.  Thermal and crustal evolution of Mars , 2002 .

[48]  M. Menvielle,et al.  Complementarity of seismological and electromagnetic sounding methods for constraining the structure of the Martian mantle , 2000 .

[49]  Marc M. Hirschmann,et al.  Mantle solidus: Experimental constraints and the effects of peridotite composition , 2000 .

[50]  F. Nimmo,et al.  Influence of early plate tectonics on the thermal evolution and magnetic field of Mars , 2000 .

[51]  A. McEwen,et al.  Evidence for recent volcanism on Mars from crater counts , 1999, Nature.

[52]  R. Cooper,et al.  Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology , 1998 .

[53]  S. Karato,et al.  Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle , 1998 .

[54]  Y. Fei,et al.  Density profile of an SNC model Martian interior and the moment-of-inertia factor of Mars , 1998 .

[55]  Y. Fei,et al.  Mineralogy of the Martian interior up to core‐mantle boundary pressures , 1997 .

[56]  Tilman Spohn,et al.  The interior structure of Mars: Implications from SNC meteorites , 1997 .

[57]  Louis-Noel Moresi,et al.  Stagnant lid convection on Venus , 1996 .

[58]  Greg Hirth,et al.  Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime , 1995 .

[59]  J. Holloway,et al.  Anhydrous partial melting of an iron-rich mantle I: subsolidus phase assemblages and partial melting phase relations at 10 to 30 kbar , 1994 .

[60]  J. Holloway,et al.  Anhydrous partial melting of an iron-rich mantle II: primary melt compositions at 15 kbar , 1994 .

[61]  T. Gudkova,et al.  On the dissipative factor of the Martian interiors , 1993 .

[62]  B. Mosser,et al.  Planetary seismology , 1993 .

[63]  H. Waenke,et al.  The bulk composition, mineralogy and internal structure of Mars , 1992 .

[64]  S. Karato The role of recrystallization in the preferred orientation of olivine , 1988 .

[65]  G. Dreibus,et al.  Mars, a Volatile-Rich Planet , 1985 .

[66]  S. Karato Grain-size distribution and rheology of the upper mantle , 1984 .

[67]  M. Ashby,et al.  Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics , 1982 .

[68]  G. Schubert,et al.  The viscosity of the earth's mantle , 1976 .

[69]  H. Jeffreys The Viscosity of the Earth , 1915 .