Expressive chromatic accumulation buffering for defocus blur

This article presents a novel parametric model to include expressive chromatic aberrations in defocus blur rendering and its effective implementation using the accumulation buffering. Our model modifies the thin-lens model to adopt the axial and lateral chromatic aberrations, which allows us to easily extend them with nonlinear and artistic appearances beyond physical limits. For the dispersion to be continuous, we employ a novel unified 3D sampling scheme, involving both the lens and spectrum. We further propose a spectral equalizer to emphasize particular dispersion ranges. As a consequence, our approach enables more intuitive and explicit control of chromatic aberrations, unlike the previous physically-based rendering methods.

[1]  Tien-Tsin Wong,et al.  Sampling with Hammersley and Halton Points , 1997, J. Graphics, GPU, & Game Tools.

[2]  Tim McGraw,et al.  Fast Bokeh effects using low-rank linear filters , 2015, The Visual Computer.

[3]  Kurt Akeley,et al.  The accumulation buffer: hardware support for high-quality rendering , 1990, SIGGRAPH.

[4]  Wolfgang Heidrich,et al.  Polynomial Optics: A Construction Kit for Efficient Ray‐Tracing of Lens Systems , 2012, Comput. Graph. Forum.

[5]  Michael Wimmer,et al.  A layered depth-of-field method for solving partial occlusion. , 2012, WSCG 2012.

[6]  Cyril Soler,et al.  Graphics gems revisited: fast and physically-based rendering of gemstones , 2004, SIGGRAPH 2004.

[7]  Carsten Dachsbacher,et al.  Efficient Monte Carlo rendering with realistic lenses , 2014, Comput. Graph. Forum.

[8]  Sellmeier Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen , 1871 .

[9]  Hans-Peter Seidel,et al.  Depth-of-field rendering with multiview synthesis , 2009, SIGGRAPH 2009.

[10]  Przemyslaw Rokita,et al.  Generating depth of-field effects in virtual reality applications , 1996, IEEE Computer Graphics and Applications.

[11]  Yang Wang,et al.  Realistic rendering of bokeh effect based on optical aberrations , 2010, The Visual Computer.

[12]  H. Seidel,et al.  Real-time lens blur effects and focus control , 2010, ACM Trans. Graph..

[13]  Han-Wei Shen,et al.  Evaluating Isosurfaces with Level‐set‐based Information Maps , 2013, Comput. Graph. Forum.

[14]  Sungkil Lee,et al.  Real-Time Depth-of-Field Rendering Using Anisotropically Filtered Mipmap Interpolation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[15]  D. Bradley Real-Time Depth of Field Rendering , 2022 .

[16]  J. E. Midwinter,et al.  Applied Nonlinear Optics , 2006 .

[17]  Xiaohui Hu,et al.  Rendering realistic spectral bokeh due to lens stops and aberrations , 2012, The Visual Computer.

[18]  Hans-Peter Seidel,et al.  Physically-based real-time lens flare rendering , 2011, ACM Trans. Graph..

[19]  Masanori Kakimoto,et al.  Real-time rendering of physically based optical effects in theory and practice , 2015, SIGGRAPH Courses.

[20]  Sungkil Lee,et al.  Practical Real‐Time Lens‐Flare Rendering , 2013, Comput. Graph. Forum.

[21]  임천석 Modern Optical Engineering: 3rd ed. (저자 : Warren J. Smith) , 2007 .

[22]  Spencer W. Thomas Dispersive refraction in ray tracing , 2005, The Visual Computer.

[23]  Martin Kraus,et al.  Depth‐of‐Field Rendering by Pyramidal Image Processing , 2007, Comput. Graph. Forum.

[24]  T. Smith,et al.  The C.I.E. colorimetric standards and their use , 1931 .

[25]  Hendrik P. A. Lensch,et al.  General Spectral Camera Lens Simulation , 2011, Comput. Graph. Forum.

[26]  Pat Hanrahan,et al.  A realistic camera model for computer graphics , 1995, SIGGRAPH.

[27]  Tomas Akenine-Möller,et al.  Stochastic rasterization using time-continuous triangles , 2007, GH '07.

[28]  Michael Potmesil,et al.  A lens and aperture camera model for synthetic image generation , 1981, SIGGRAPH '81.

[29]  Robert L. Cook,et al.  Distributed ray tracing , 1998 .