Toward the multiscale nature of stress corrosion cracking

[1]  G. Love,et al.  Dislocation pipe diffusion , 1964 .

[2]  R. Balluffi On measurements of self‐diffusion rates along dislocations in F.C.C. Metals , 1970 .

[3]  J. Cahn,et al.  Diffusion induced grain boundary migration , 1979 .

[4]  J. Cahn,et al.  Mechanism for diffusion induced grain boundary migration , 1981 .

[5]  P. Ho,et al.  Determination of vacancy mechanism for grain boundary self-diffusion by computer simulation , 1981 .

[6]  N. L. Peterson Grain-boundary diffusion in metals , 1983 .

[7]  A. H. King,et al.  Diffusion induced grain boundary migration , 1987 .

[8]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[9]  J. Robertson The mechanism of high temperature aqueous corrosion of stainless steels , 1991 .

[10]  R. Balluffi Grain boundary diffusion mechanisms in metals , 1992 .

[11]  Frederick H. Streitz,et al.  Electrostatic potentials for metal-oxide surfaces and interfaces. , 1994 .

[12]  Chr. Herzig,et al.  Grain boundary diffusion: fundamentals to recent developments , 1997 .

[13]  M. Walls,et al.  Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment , 1998 .

[14]  B. Stellwag The mechanism of oxide film formation on austenitic stainless steels in high temperature water , 1998 .

[15]  D. Farkas REVIEW ARTICLE: Atomistic theory and computer simulation of grain boundary structure and diffusion , 2000 .

[16]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[17]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[18]  M. Hanson,et al.  Corrosion behavior of 304 stainless steel in high temperature, hydrogenated water , 2001 .

[19]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[20]  M. Hanson,et al.  Corrosion behavior of NiCrMo Alloy 625 in high temperature, hydrogenated water , 2003 .

[21]  P. Andresen,et al.  Data Quality, Issues, and Guidelines for Electrochemical Corrosion Potential Measurement in High-Temperature Water , 2003 .

[22]  T. Terachi,et al.  Influence of Dissolved Hydrogen on Oxide Film and PWSCC of Alloy 600 in PWR Primary Water , 2003 .

[23]  Huajian Gao,et al.  Hyperelasticity governs dynamic fracture at a critical length scale , 2003, Nature.

[24]  A. V. Duin,et al.  The Computational Materials Design Facility (CMDF): A powerful framework for multi-paradigm multi-scale simulations , 2005 .

[25]  Takashi Sato,et al.  An ATEM study of oxidation behavior of SCC crack tips in 304L stainless steel in high temperature oxygenated water , 2005 .

[26]  L. E. Thomas,et al.  High-Resolution Characterizations of Stress-Corrosion Cracks in Austenitic Stainless Steel from Crack Growth Tests in BWR-Simulated Environments , 2005 .

[27]  R. Friesner Ab initio quantum chemistry: methodology and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  T. Terachi,et al.  Microstructural Characterization of SCC Crack Tip and Oxide Film for SUS 316 Stainless Steel in Simulated PWR Primary Water at 320°C , 2005 .

[29]  Huajian Gao,et al.  The dynamical complexity of work-hardening: a large-scale molecular dynamics simulation , 2005 .

[30]  Huajian Gao,et al.  Dynamical fracture instabilities due to local hyperelasticity at crack tips , 2006, Nature.

[31]  Markus J Buehler,et al.  Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. , 2006, Physical review letters.

[32]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[33]  M. Shiga,et al.  Grain Boundary Decohesion by Sulfur Segregation in Ferromagnetic Iron and Nickel-A First-Principles Study- , 2006 .

[34]  W. Carter,et al.  Simultaneous grain boundary migration and grain rotation , 2006 .

[35]  T. Marrow,et al.  A two-dimensional mesoscale model for intergranular stress corrosion crack propagation☆ , 2006 .

[36]  M. Hanson,et al.  Corrosion behavior of NiCrFe Alloy 600 in high temperature, hydrogenated water , 2003 .

[37]  Eric Andrieu,et al.  Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600 , 2006 .

[38]  Z. Jiao,et al.  Corrosion of Austenitic Alloys in Supercritical Water , 2006 .

[39]  Gaurav Gupta,et al.  Corrosion and stress corrosion cracking in supercritical water , 2007 .

[40]  Steven J. Plimpton,et al.  Computing the mobility of grain boundaries , 2006, Nature materials.

[41]  Markus J. Buehler,et al.  Fracture mechanics of protein materials , 2007 .

[42]  N. Lewis,et al.  Nickel Alloy Primary Water Bulk Surface and SCC Corrosion Film Analytical Characterization and SCC Mechanistic Implications , 2007 .

[43]  W. Ludwig,et al.  Observations of Intergranular Stress Corrosion Cracking in a Grain-Mapped Polycrystal , 2008, Science.

[44]  Sergio Lozano-Perez,et al.  A guide on FIB preparation of samples containing stress corrosion crack tips for TEM and atom-probe analysis. , 2008, Micron.

[45]  E. Han,et al.  Analyses of oxide films grown on Alloy 625 in oxidizing supercritical water , 2008 .

[46]  X. W. Zhou,et al.  Embedded-ion method: An analytical energy-conserving charge-transfer interatomic potential and its application to the La-Br system , 2008 .

[47]  R. Kirk,et al.  Observation of Giant Diffusivity Along Dislocation Cores , 2008, Science.

[48]  E. Han,et al.  Oxidation of 316 stainless steel in supercritical water , 2009 .

[49]  M. Sennour,et al.  Advanced TEM characterization of stress corrosion cracking of Alloy 600 in pressurized water reactor primary water environment , 2009 .

[50]  Wang Weiqiang,et al.  Interaction and coalescence of nanovoids and dynamic fracture in silica glass: multimillion-to-billion atom molecular dynamics simulations , 2009 .

[51]  G. Smith,et al.  Multi-scale characterization of stress corrosion cracking of cold-worked stainless steels and the influence of Cr content , 2009 .

[52]  David A. Petti,et al.  Materials challenges for nuclear systems , 2010 .

[53]  M. Pijolat,et al.  A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor , 2010 .

[54]  Zhiping Xu,et al.  Materials science: Mind the helical crack , 2010, Nature.

[55]  Priya Vashishta,et al.  Embrittlement of metal by solute segregation-induced amorphization. , 2010, Physical review letters.

[56]  Tzu-Ray Shan,et al.  Charge-optimized many-body potential for the hafnium/hafnium oxide system , 2010 .

[57]  E. Han,et al.  The mechanism of oxide film formation on Alloy 690 in oxygenated high temperature water , 2011 .

[58]  M. Buehler,et al.  Atomistic study of the effect of crack tip ledges on the nucleation of dislocations in silicon single crystals at elevated temperature , 2011 .

[59]  L. C. Gontard,et al.  Three-dimensional characterization of stress corrosion cracks , 2011 .

[60]  E. Han,et al.  Effects of cold working degrees on grain boundary characters and strain concentration at grain boundaries in Alloy 600 , 2011 .

[61]  M. Fulger,et al.  Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment , 2011 .

[62]  G. Smith,et al.  Nanoscale characterisation of grain boundary oxidation in cold-worked stainless steels , 2012 .

[63]  A. Thompson,et al.  Computational aspects of many-body potentials , 2012 .

[64]  Fu-Rong Chen,et al.  Corrosion behavior of Alloy 625 in supercritical water environments , 2012 .

[65]  David B. Krisiloff,et al.  Ab initio reaction kinetics of hydrogen abstraction from methyl formate by hydrogen, methyl, oxygen, hydroxyl, and hydroperoxy radicals. , 2012, The journal of physical chemistry. A.

[66]  E. Andrieu,et al.  Effect of surface preparation on the corrosion of austenitic stainless steel 304L in high temperature steam and simulated PWR primary water , 2012 .

[67]  L. E. Thomas,et al.  High-Resolution Crack Imaging Reveals Degradation Processes in Nuclear Reactor Structural Materials , 2012 .

[68]  Takuyo Yamada,et al.  The role of cold work and applied stress on surface oxidation of 304 stainless steel , 2012 .

[69]  Comparison of molecular dynamics simulation methods for the study of grain boundary migration , 2013 .

[70]  Steven J. Zinkle,et al.  Materials Challenges in Nuclear Energy , 2013 .

[71]  Debasis Sengupta,et al.  High-Temperature Oxidation of SiC-Based Composite: Rate Constant Calculation from ReaxFF MD Simulations, Part II , 2013 .

[72]  E. Han,et al.  Corrosion behavior of Alloy 690 in aerated supercritical water , 2013 .

[73]  Wei Ke,et al.  Microstructural characteristics of the oxide films formed on Alloy 690 TT in pure and primary water at 325°C , 2013 .

[74]  S. Hwang,et al.  Ex situ and in situ characterization of stress corrosion cracking of nickel-base alloys at high temperature , 2014, Journal of Solid State Electrochemistry.

[75]  Stephen M. Bruemmer,et al.  Linking Grain Boundary Microstructure to Stress Corrosion Cracking of Cold-Rolled Alloy 690 in Pressurized Water Reactor Primary Water , 2013 .

[76]  D. Saxey,et al.  Examinations of Oxidation and Sulfidation of Grain Boundaries in Alloy 600 Exposed to Simulated Pressurized Water Reactor Primary Water , 2013, Microscopy and Microanalysis.

[77]  Yun Soo Lim,et al.  Microstructural characterization on intergranular stress corrosion cracking of Alloy 600 in PWR primary water environment , 2013 .

[78]  Sidney Yip,et al.  Multiscale materials modelling at the mesoscale. , 2013, Nature materials.

[79]  D. Armstrong,et al.  How oxidized grain boundaries fail , 2013 .

[80]  J. Kermode,et al.  Dissociative chemisorption of O2 inducing stress corrosion cracking in silicon crystals. , 2014, Physical Review Letters.

[81]  Qiang Du,et al.  Peridynamics, Fracture, and Nonlocal Continuum Models , 2014 .

[82]  M. Herbig,et al.  Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces , 2014 .

[83]  S. Lozano-Perez,et al.  SCC in PWRs: Learning from a Bottom-Up Approach , 2014 .

[84]  Boris I. Yakobson,et al.  Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide , 2014, Nature Communications.

[85]  A. B. Muñoz-García,et al.  First-Principles Study of Lanthanum Strontium Manganite: Insights into Electronic Structure and Oxygen Vacancy Formation , 2014 .

[86]  M. Olszta,et al.  Grain boundary depletion and migration during selective oxidation of Cr in a Ni–5Cr binary alloy exposed to high-temperature hydrogenated water , 2014 .

[87]  T. Laurila,et al.  Thermodynamics, Diffusion and the Kirkendall Effect in Solids , 2014 .

[88]  G. Botton,et al.  Internal oxidation of Alloy 600 exposed to hydrogenated steam and the beneficial effects of thermal treatment , 2014 .

[89]  Stewart Andrew Silling,et al.  Peridynamic model for fatigue cracking. , 2014 .

[90]  J. Neugebauer,et al.  Role of the mesoscale in migration kinetics of flat grain boundaries , 2014 .

[91]  Adri C. T. van Duin,et al.  Reduced yield stress for zirconium exposed to iodine: reactive force field simulation , 2014, Advanced Modeling and Simulation in Engineering Sciences.

[92]  Peter V. Coveney,et al.  Survey of Multiscale and Multiphysics Applications and Communities , 2012, Computing in Science & Engineering.

[93]  A. V. van Duin,et al.  Molecular dynamics simulations of the effects of vacancies on nickel self-diffusion, oxygen diffusion and oxidation initiation in nickel, using the ReaxFF reactive force field , 2015 .

[94]  Adri C. T. van Duin,et al.  Comparative molecular dynamics study of fcc-Ni nanoplate stress corrosion in water , 2015 .

[95]  D. Tafen,et al.  Simulation of Atomic Diffusion in the Fcc NiAl System: A Kinetic Monte Carlo Study , 2015 .

[96]  Seyed Morteza Sabet,et al.  Effect of thermo-mechanical processing on oxidation of austenitic stainless steel 316L in supercritical water , 2015 .

[97]  J. Hynes Molecules in motion: chemical reaction and allied dynamics in solution and elsewhere. , 2015, Annual review of physical chemistry.

[98]  F. Ormiga,et al.  Electrochemical-induced dissolution of stainless steel files. , 2015, International endodontic journal.

[99]  Ali Alavi,et al.  Accurate Ab initio calculation of ionization potentials of the first-row transition metals with the configuration-interaction quantum Monte Carlo technique. , 2015, Physical review letters.

[100]  I. Obot,et al.  Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview , 2015 .

[101]  A. Rollett,et al.  Understanding materials microstructure and behavior at the mesoscale , 2015 .

[102]  E. Han,et al.  Effect of electropolishing on corrosion of Alloy 600 in high temperature water , 2015 .

[103]  J. Lindsay Stress Corrosion Cracking and Internal Oxidation of Alloy 600 in High Temperature Hydrogenated Steam and Water , 2015 .

[104]  N. Kwag,et al.  Acoustic emission characteristics of stress corrosion cracks in a type 304 stainless steel tube , 2015 .

[105]  C. Taylor,et al.  First-principles insights into the nature of zirconium–iodine interactions and the initiation of iodine-induced stress–corrosion cracking , 2015 .

[106]  Peter Gumbsch,et al.  Atomistic aspects of fracture , 2015, International Journal of Fracture.

[107]  Sung-Sik Kang,et al.  The Effect of Welding Residual Stress for Making Artificial Stress Corrosion Crack in the STS 304 Pipe , 2015 .

[108]  Yu Sun,et al.  Atomistic study of segregation and diffusion of yttrium and calcium cations near electrolyte surfaces in solid oxide fuel cells , 2015 .

[109]  O. Deutschmann,et al.  Kinetic Monte Carlo simulations of surface reactions on supported nanoparticles: A novel approach and computer code. , 2015, The Journal of chemical physics.

[110]  Zhiliang Zhang,et al.  Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking , 2015, Scientific reports.

[111]  B. Grabowski,et al.  Mechanisms and kinetics of the migration of grain boundaries containing extended defects , 2015 .

[112]  A. Wilkinson,et al.  Using transmission Kikuchi diffraction to study intergranular stress corrosion cracking in type 316 stainless steels. , 2015, Micron.

[113]  P. Withers,et al.  Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[114]  K. Rosso,et al.  Ab Initio Modeling of Bulk and Intragranular Diffusion in Ni Alloys. , 2015, The journal of physical chemistry letters.

[115]  M. Moody,et al.  Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels , 2015 .

[116]  K. Rosso,et al.  Multiscale model of metal alloy oxidation at grain boundaries. , 2015, The Journal of chemical physics.

[117]  D. Armstrong,et al.  Micro-mechanical measurement of fracture behaviour of individual grain boundaries in Ni alloy 600 exposed to a pressurized water reactor environment , 2016 .

[118]  Taolong Xu,et al.  Bridging crack propagation at the atomistic and mesoscopic scale for BCC-Fe with hybrid multiscale methods , 2016 .

[119]  Yujin Hu,et al.  Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel , 2016 .

[120]  Fast diffusion of water nanodroplets on graphene. , 2016, Nature materials.

[121]  M. Pijolat,et al.  Corrosion of nickel-base alloys in primary medium of pressurized water reactors: New insights on the oxide growth mechanisms and kinetic modelling , 2016 .

[122]  V. Mohles,et al.  Separating grain boundary migration mechanisms in molecular dynamics simulations , 2016 .

[123]  D. Spearot,et al.  Traction–separation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations , 2016 .

[124]  Takuyo Yamada,et al.  Degradation of Alloy 690 After Relatively Short Times , 2016 .

[125]  M. Sennour,et al.  Effect of implantation defects on the corrosion of 316L stainless steels in primary medium of pressurized water reactors , 2016 .

[126]  I. Novoselov,et al.  Impact of segregated interstitials on structures and energies of tilt grain boundaries in Mo , 2016 .

[127]  Sudhir B. Kylasa,et al.  The ReaxFF reactive force-field: development, applications and future directions , 2016 .

[128]  C. Maffiotte,et al.  AES characterization of oxide films formed on nickel‐base alloys at Supercritical Water Reactor (SCWR) conditions , 2016 .

[129]  M. G. Burke,et al.  The effect of residual stress on the Preferential Intergranular Oxidation of Alloy 600 , 2016 .

[130]  Ying Yang,et al.  Roles of vacancy/interstitial diffusion and segregation in the microchemistry at grain boundaries of irradiated Fe–Cr–Ni alloys , 2016 .

[131]  Y. Bréchet,et al.  Modeling radiation induced segregation in iron–chromium alloys , 2016 .

[132]  Yun Soo Lim,et al.  Intergranular oxidation of Ni-based Alloy 600 in a simulated PWR primary water environment , 2016 .

[133]  L. Ye,et al.  Indentation stress-based models to predict fracture properties of brittle thin film on a ductile substrate , 2016 .

[134]  R. Grimes,et al.  Pipe and grain boundary diffusion of He in UO2 , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[135]  A. V. van Duin,et al.  Interactions of hydrogen with the iron and iron carbide interfaces: a ReaxFF molecular dynamics study. , 2016, Physical chemistry chemical physics : PCCP.

[136]  N. T. Tung,et al.  A PHASE FIELD METHOD FOR MODELLING STRESS CORROSION CRACKS PROPAGATION IN A NICKEL BASE ALLOY , 2016 .

[137]  G. Schatz,et al.  Reactive Force Field Modeling of Zinc Oxide Nanoparticle Formation , 2016 .

[138]  Damien Féron,et al.  Overview on corrosion in supercritical fluids , 2017 .

[139]  G. Botton,et al.  Effects of boundary migration and pinning particles on intergranular oxidation revealed by 2D and 3D analytical electron microscopy , 2017 .

[140]  G. Was,et al.  Oxidation of Alloy 600 and Alloy 690: Experimentally Accelerated Study in Hydrogenated Supercritical Water , 2017, Metallurgical and Materials Transactions A.

[141]  G. Was,et al.  Accelerated Stress Corrosion Crack Initiation of Alloys 600 and 690 in Hydrogenated Supercritical Water , 2017, Metallurgical and Materials Transactions A.

[142]  Xuelian Xu,et al.  Effects of Dissolved Gas and Cold Work on the Electrochemical Behaviors of 304 Stainless Steel in Simulated PWR Primary Water , 2017 .

[143]  T. Shoji,et al.  Accelerated test for evaluation of intergranular stress corrosion cracking initiation characteristics of non-sensitized 316 austenitic stainless steel in simulated pressure water reactor environment , 2017 .

[144]  M. G. Burke,et al.  The intergranular oxidation susceptibility of thermally–treated Alloy 600 , 2017 .

[145]  Jingli Luo,et al.  Corrosion behavior of alloy 316L stainless steel after exposure to supercritical water at 500 °C for 20,000 h , 2017 .