Neural Networks Evaluating NMR Data: An Approach To Visualize Similarities and Relationships of Sol-Gel Derived Inorganic-Organic and Organometallic Hybrid Polymers1

An artificial neural network (ANN)--the Kohonen Self-Organizing Feature Map (SOM)-is used to evaluate solid-state NMR spectroscopic derived data of 72 siloxane-based phosphine and organometallic functionalized hybrid polymers. The data set consists of parameters that describe their structural features and their dynamic behavior. The ANN visualizes similarities of the investigated compounds by reducing the dimension of the data set. This allows a comparison of these polymers that was not possible beforehand because of their structural diversity.

[1]  H. Mayer,et al.  Supported organometallic complexes. 5. Polysiloxane-bound ether-phosphines and ruthenium complexes. A characterization by solid-state NMR spectroscopy and catalysis , 1994 .

[2]  Rüdiger Voelkel Hochauflösende Festkörper‐13C‐NMR‐Spektroskopie von Polymeren , 1988 .

[3]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[4]  H. Eckert Structural characterization of noncrystalline solids and glasses using solid state NMR , 1992 .

[5]  C. Fyfe,et al.  An alternative preparation of organofunctionalized silica gels and their characterization by two-dimensional high-resolution solid-state heteronuclear NMR correlation spectroscopy , 1992 .

[6]  E. Lindner,et al.  Supported organometallic complexes , 2001 .

[7]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[8]  H. Spiess Structure and dynamics of solid polymers from 2D- and 3D-NMR , 1991 .

[9]  Ken A. Dill,et al.  Solute partitioning into chain molecule interphases: Monolayers, bilayer membranes, and micelles , 1986 .

[10]  A. Jäger,et al.  Mobility Studies on Sol−Gel Processed Ether−Phosphines and Their Ruthenium(II) Complexes with Different Spacer Lengths. A Solid-State NMR Study1,2 , 1997 .

[11]  H. Mayer,et al.  Chemistry in interphases. The solid-phase synthesis of well defined rhodium and iridium phosphine complexes† , 1999 .

[12]  É. Lippmaa,et al.  Structural studies of silicates by solid-state high-resolution silicon-29 NMR , 1980 .

[13]  E. Stejskal,et al.  Magic-Angle13C NMR Analysis of Motion in Solid Glassy Polymers , 1977 .

[14]  E. Hahn,et al.  ROTATING-FRAME NUCLEAR DOUBLE RESONANCE DYNAMICS: DIPOLAR FLUCTUATION SPECTRUM IN CaF2 , 1969 .

[15]  L. Hench,et al.  The sol-gel process , 1990 .

[16]  Ken A. Dill,et al.  The molecular mechanism of retention in reversed-phase liquid chromatography , 1989 .

[17]  E. Lindner,et al.  Chemie in Interphasen – ein neuer Weg für die metallorganische Synthese und Katalyse , 1999 .

[18]  K. J. Packer,et al.  Discriminatory experiments in high-resolution13C NMR of solid polymers , 1982 .

[19]  T. Schneller,et al.  Hydrocarbon-Bridged Methyldimethoxysilanes as new Co-condensation Agents for the Sol−Gel Process of the Rhodium(I) Complex ClRh(CO)(P∼O)2 Containing the Ligand PhP(CH2CH2OCH3)(CH2)3Si(OCH3)31|Pv3 , 1997 .

[20]  E. Plies,et al.  Supported organometallic complexes. Part 27: novel sol–gel processed rhodium(I) complexes: synthesis, characterization, and catalytic reactions in interphases ☆ , 2002 .