Differences in onset latency of macaque inferotemporal neural responses to primate and non-primate faces.

Neurons in the visual system respond to different visual stimuli with different onset latencies. However, it has remained unknown which stimulus features, aside from stimulus contrast, determine the onset latencies of responses. To examine the possibility that response onset latencies carry information about complex object images, we recorded single-cell responses in the inferior temporal cortex of alert monkeys, while they viewed >1,000 object stimuli. Many cells responded to human and non-primate animal faces with comparable magnitudes but responded significantly more quickly to human faces than to non-primate animal faces. Differences in onset latency may be used to increase the coding capacity or enhance or suppress information about particular object groups by time-dependent modulation.

[1]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[2]  C. Gross Visual Functions of Inferotemporal Cortex , 1973 .

[3]  M. Sanders Handbook of Sensory Physiology , 1975 .

[4]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  W. J. Daunicht,et al.  An on-line spike form discriminator for extracellular recordings based on an analog correlation technique , 1986, Journal of Neuroscience Methods.

[6]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.

[7]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. , 1987, Journal of neurophysiology.

[8]  W Zucchini,et al.  On the statistical analysis of ROC curves. , 1989, Statistics in medicine.

[9]  Simon J. Thorpe,et al.  Spike arrival times: A highly efficient coding scheme for neural networks , 1990 .

[10]  A. Agresti An introduction to categorical data analysis , 1997 .

[11]  R. Hilgers Distribution-Free Confidence Bounds for ROC Curves , 1991, Methods of Information in Medicine.

[12]  D. Perrett,et al.  Time course of neural responses discriminating different views of the face and head. , 1992, Journal of neurophysiology.

[13]  M. Tovée,et al.  Information encoding and the responses of single neurons in the primate temporal visual cortex. , 1993, Journal of neurophysiology.

[14]  M. Tovée,et al.  Processing speed in the cerebral cortex and the neurophysiology of visual masking , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  G Kovács,et al.  Cortical correlate of pattern backward masking. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[16]  B. Richmond,et al.  Latency: another potential code for feature binding in striate cortex. , 1996, Journal of neurophysiology.

[17]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[18]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[19]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[20]  E. Seidemann,et al.  Temporal gating of neural signals during performance of a visual discrimination task , 1998, Nature.

[21]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[22]  O. Pascalis,et al.  Face recognition in primates: a cross-species study , 1998, Behavioural Processes.

[23]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[24]  T. Allison,et al.  Electrophysiological studies of human face perception. II: Response properties of face-specific potentials generated in occipitotemporal cortex. , 1999, Cerebral cortex.

[25]  T. Gawne The simultaneous coding of orientation and contrast in the responses of V1 complex cells , 2000, Experimental Brain Research.

[26]  F. Mechler,et al.  Temporal coding of contrast in primary visual cortex: when, what, and why. , 2001, Journal of neurophysiology.

[27]  H. Tamura,et al.  Visual response properties of cells in the ventral and dorsal parts of the macaque inferotemporal cortex. , 2001, Cerebral cortex.

[28]  P. Fldik,et al.  The Speed of Sight , 2001, Journal of Cognitive Neuroscience.

[29]  M W Oram,et al.  The temporal resolution of neural codes: does response latency have a unique role? , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[30]  Joseph P. Hornak,et al.  Encyclopedia of imaging science and technology , 2002 .

[31]  S. Bentin,et al.  Domain specificity versus expertise: factors influencing distinct processing of faces , 2002, Cognition.

[32]  S. Thorpe,et al.  Surfing a spike wave down the ventral stream , 2002, Vision Research.

[33]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[34]  Reinhard Eckhorn,et al.  Rigorous and extended application of information theory to the afferent visual system of the cat. I. Basic concepts , 2004, Kybernetik.

[35]  Reinhard Eckhorn,et al.  Rigorous and extended application of information theory to the afferent visual system of the cat , 2004, Biological Cybernetics.

[36]  Michèle Fabre-Thorpe,et al.  Animal and human faces in natural scenes: How specific to human faces is the N170 ERP component? , 2004, Journal of vision.

[37]  Hisao Nishijo,et al.  Neuronal correlates of face identification in the monkey anterior temporal cortical areas. , 2004, Journal of neurophysiology.

[38]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[39]  G. Rousselet,et al.  Animal and human faces in natural scenes: How specific to human faces is the N170 ERP component? , 2004, Journal of vision.