Sliding-Mode Control for Single-Phase Grid-Connected $\mbox{LCL}$-Filtered VSI With Double-Band Hysteresis Scheme

This paper presents a sliding-mode control (SMC) strategy for single-phase grid-connected LCL-filtered voltage source inverters (VSIs) with double-band hysteresis scheme. The proposed SMC is simpler than the existing SMC methods devised for grid-connected VSIs since its sliding-surface function requires the sensing of capacitor voltage and grid current only. In addition, a double-band hysteresis scheme which ensures the switching of a transistor in the VSI during a half cycle while it remains either on or off in the other half cycle of the fundamental period is used to mitigate the switching frequency. Furthermore, the analytical expressions for the instantaneous and average switching frequencies are derived. The theoretical considerations and analytical results are verified through computer simulations and experimental results obtained from a 3.3-kW system. Simulation and experimental results show that the proposed SMC strategy exhibits an excellent performance in achieving the required control objectives such as fast dynamic response, robustness, sinusoidal grid current with low total harmonic distortion, and simplicity in a practical implementation.

[1]  Marco Liserre,et al.  Filter-Based Active Damping of Voltage Source Converters With $LCL$ Filter , 2011, IEEE Transactions on Industrial Electronics.

[2]  M. Liserre,et al.  Analysis of the Passive Damping Losses in LCL-Filter-Based Grid Converters , 2013, IEEE Transactions on Power Electronics.

[3]  Dehong Xu,et al.  An Improved Control Strategy for Grid-Connected Voltage Source Inverters With an LCL Filter , 2006, IEEE Transactions on Power Electronics.

[4]  M. Liserre,et al.  A stable three-phase LCL-filter based active rectifier without damping , 2003, 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, 2003..

[5]  Henry Shu-Hung Chung,et al.  Constant-frequency hysteresis current control of grid-connected VSI without bandwidth control , 2009 .

[6]  J.W. Kolar,et al.  A Modified Direct Power Control Strategy Allowing the Connection of Three-Phase Inverters to the Grid Through $LCL$ Filters , 2005, IEEE Transactions on Industry Applications.

[7]  Alireza R. Bakhshai,et al.  Composite Nonlinear Feedback Control and Stability Analysis of a Grid-Connected Voltage Source Inverter With $LCL$ Filter , 2013, IEEE Transactions on Industrial Electronics.

[8]  Dehong Xu,et al.  An improved control strategy for grid-connected voltage source inverters with a LCL filter , 2006, Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC '06..

[9]  Donald Grahame Holmes,et al.  Grid current regulation of a three-phase voltage source inverter with an LCL input filter , 2002, 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289).

[10]  M. Liserre,et al.  Genetic algorithm-based design of the active damping for an LCL-filter three-phase active rectifier , 2003, IEEE Transactions on Power Electronics.

[11]  Weidong Xiao,et al.  Two Degrees of Freedom Active Damping Technique for $LCL$ Filter-Based Grid Connected PV Systems , 2014, IEEE Transactions on Industrial Electronics.

[12]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[13]  Xinbo Ruan,et al.  Capacitor-Current-Feedback Active Damping With Reduced Computation Delay for Improving Robustness of LCL-Type Grid-Connected Inverter , 2014, IEEE Transactions on Power Electronics.

[14]  Hasan Komurcugil,et al.  Rotating-Sliding-Line-Based Sliding-Mode Control for Single-Phase UPS Inverters , 2012, IEEE Transactions on Industrial Electronics.

[15]  Dehong Xu,et al.  A New Feedback Method for PR Current Control of LCL-Filter-Based Grid-Connected Inverter , 2010, IEEE Transactions on Industrial Electronics.

[16]  Shaojun Xie,et al.  Active Damping-Based Control for Grid-Connected $LCL$ -Filtered Inverter With Injected Grid Current Feedback Only , 2014, IEEE Transactions on Industrial Electronics.

[17]  Fengjiang Wu,et al.  Analysis and Solution of Current Zero-Crossing Distortion With Unipolar Hysteresis Current Control in Grid-Connected Inverter , 2013, IEEE Transactions on Industrial Electronics.

[18]  Frede Blaabjerg,et al.  Proportional-resonant controllers and filters for grid-connected voltage-source converters , 2006 .

[19]  Pekik Argo Dahono,et al.  New hysteresis current controller for single-phase full-bridge inverters , 2009 .

[20]  Fengjiang Wu,et al.  Sampling Period Online Adjusting-Based Hysteresis Current Control Without Band With Constant Switching Frequency , 2015, IEEE Transactions on Industrial Electronics.

[21]  J.W. Kolar,et al.  A modified direct power control strategy allowing the connection of three-phase inverter to the grid through LCL filters , 2005, Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, 2005..

[22]  H.S.-H. Chung,et al.  Constant-frequency hysteresis current control of grid-connected VSI without bandwidth control , 2009, 2009 IEEE Energy Conversion Congress and Exposition.

[23]  Tao Liu,et al.  A Sliding-Mode Controller With Multiresonant Sliding Surface for Single-Phase Grid-Connected VSI With an LCL Filter , 2013, IEEE Transactions on Power Electronics.